
/opt/local/.../DocBook/en/JavaScript.xml page 1 of 9

 Chapter 1:

 1

Note

 2

JavaScript Coding Guidelines
Here, you will find an explanation of the JavaScript Coding Guidelines we use. Generally, we strive to follow
the FLOW3 Coding Guidelines as closely as possible, with exceptions which make sense in the JavaScript
context.

This guideline explains mostly how we want JavaScript code to be formatted; and it does not deal with the
TYPO3 Phoenix User Interface structure. If you want to know more about the TYPO3 Phoenix User Interface
architecture, have a look into the "Phoenix User Interface Development" book.

Naming Conventions
one class per file, with the same naming convention as FLOW3.

This means all classes are built like this: F3.PackageKey.SubNamespace.ClassName, and this class is
implemented in a JavaScript file located at ...
Package/.../JavaScript/SubNamespace/ClassName.js.

Right now, the base directory for JavaScript in FLOW3 packages Resources/Public/JavaScript, but
this might still change.

In TYPO3 v4, the prefix is TYPO3. This means an extension should use
TYPO3.ExtensionKey as base namespace, while the TYPO3 Core should use
TYPO3.Backend as namespace.

We suggest that the base directory for JavaScript files is JavaScript.

Files have to be encoded in UTF-8.

Classes and namespaces are written in UpperCamelCase, while properties and methods are written in
lowerCamelCase.

The xtype of a class is always the fully qualified class name. Every class which can be instanciated
needs to have an xtype declaration.

Never create a class which has classes inside itself. Example: if the class F3.TYPO3.Foo exists, it is
prohibited to create a class F3.TYPO3.Foo.Bar.You can easily check this: If a directory with the same
name as the JavaScript file exists, this is prohibited.

Here follows an example:

F3.TYPO3.Foo.Bar // implemented in .../Foo/Bar.js
F3.TYPO3.Foo.Bar = ...

F3.TYPO3.Foo // implemented in ...Foo.js
F3.TYPO3.Foo = overriding the "Bar" class

So, if the class F3.TYPO3.Foo.Bar is included before F3.TYPO3.Foo, then the second class definition
completely overrides the Bar object. In order to prevent such issues, this constellation is forbidden.

Every class, method and class property should have a doc comment.

Private methods and properties should start with an underscore (_) and have a @private annotation.

Doc Comments
Generally, doc comments follow the following form:

/**
 *
 */

See the sections below on which doc comments are available for the different elements (classes, methods,

/opt/local/.../DocBook/en/JavaScript.xml page 2 of 9

 3

 3.1

1

2

3

4

5

6

1

See the sections below on which doc comments are available for the different elements (classes, methods,
...).

We are using http://code.google.com/p/ext-doc/ for rendering an API documentation from the code, that's
why types inside @param, @type and @cfg have to be written in curly brackets like this:

@param {String} theFirstParameter A Description of the first parameter
@param {My.Class.Name} theSecondParameter A description of the second parameter

Generally, we do not use @api annotations, as private methods and attributes are marked with @private
and prefixed with an underscore. So, everything which is not marked as private belongs to the public API!

We are not sure yet if we should use @author annotations at all. (TODO Decide!)

TODO: find out how to make cross-references, or how to nicely format multiline-text inside doc comments
(@link?).

Class Definitions
Classes can be declared singleton or prototype. A class is singleton, if only one instance of this class will
exist at any given time. An class is of type prototype, if more than one object can be created from the class
at run-time. Most classes will be of type prototype.

You will find examples for both below.

Prototype Class Definitions
Example of a prototype class definition

Ext.ns("F3.TYPO3.Content");

/* *
 * This script belongs to the FLOW3 package "TYPO3". *
 * *
 * It is free software; you can redistribute it and/or modify it under *
 * the terms of the GNU General Public License as published by the Free *
 * Software Foundation, either version 3 of the License, or (at your *
 * option) any later version. *
 * *
 * This script is distributed in the hope that it will be useful, but *
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- *
 * TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General *
 * Public License for more details. *
 * *
 * You should have received a copy of the GNU General Public License *
 * along with the script. *
 * If not, see http://www.gnu.org/licenses/gpl.html *
 * *
 * The TYPO3 project - inspiring people to share! *
 * */

/**
 * @class F3.TYPO3.Content.FrontendEditor
 *
 * The main frontend editor.
 *
 * @namespace F3.TYPO3.Content
 * @extends Ext.Container
 */
F3.TYPO3.Content.FrontendEditor = Ext.extend(Ext.Container, {
// here comes the class contents
});
Ext.reg('F3.TYPO3.Content.FrontendEditor', F3.TYPO3.Content.FrontendEditor);

At the very beginning of the file is the namespace declaration of the class, followed by a newline.

/opt/local/.../DocBook/en/JavaScript.xml page 3 of 9

2

3

4

5

6

 3.2

1

2

Then follows the class documentation block, which must start with the @class declaration in the
first line.

Now comes a description of the class, possibly with examples.

Afterwards must follow the namespace of the class and the information about object extension.

Now comes the actual class definition, using Ext.extend.

As the last line of the class, it follows the xType registration. We always use the fully qualified class
name as xtype

Usually, the constructor of the class receives a hash of parameters. The possible configuration options need
to be documented inside the class with the @cfg annotation:

F3.TYPO3.Content.FrontendEditor = Ext.extend(Ext.Container, {
/**
 * An explanation of the configuration option followed
 * by a blank line.
 *
 * @cfg {Number} configTwo
 */
configTwo: 10
...
}

Singleton Class Definitions
Now comes a singleton class definition. You will see that it is very similar to a prototype class definition, we
will only highlight the differences.

Example of a singleton class definition

Ext.ns("F3.TYPO3.Core");

/* *
 * This script belongs to the FLOW3 package "TYPO3". *
 * *
 * It is free software; you can redistribute it and/or modify it under *
 * the terms of the GNU General Public License as published by the Free *
 * Software Foundation, either version 3 of the License, or (at your *
 * option) any later version. *
 * *
 * This script is distributed in the hope that it will be useful, but *
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- *
 * TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General *
 * Public License for more details. *
 * *
 * You should have received a copy of the GNU General Public License *
 * along with the script. *
 * If not, see http://www.gnu.org/licenses/gpl.html *
 * *
 * The TYPO3 project - inspiring people to share! *
 * */

/**
 * @class F3.TYPO3.Core.Application
 *
 * The main entry point which controls the lifecycle of the application.
 *
 * @namespace F3.TYPO3.Core
 * @extends Ext.util.Observable
 * @singleton
 */
F3.TYPO3.Core.Application = Ext.apply(new Ext.util.Observable, {
// here comes the class contents

/opt/local/.../DocBook/en/JavaScript.xml page 4 of 9

3

1

2

3

 3.3

 4

});

You should add a @singleton annotation to the class doc comment after the @namespace and
@extends annotation

In singleton classes, you use Ext.apply. Note that you need to use new to instanciate the base
class.

There is no xType registration in singletons, as they are available globally anyhow.

Class Doc Comments
Class Doc Comments should always be in the following order:

@class Name.Of.Class (required)

Then follows a description of the class, which can span multiple lines. Before and after this description
should be a a blank line.

@namespace Name.Of.Namespace (required)

@extends Name.Of.BaseClass (required)

@singleton (required if the class is a singleton)

If the class has a non-empty constructor, the following doc comments need to be added as well, after a
blank line:

@constructor

@param {type} nameOfParameter description of parameter for every parameter of the
constructor

Example of a class doc comment without constructor

/**
 * @class F3.TYPO3.Foo.Bar
 *
 * Some Description of the class,
 * which can possibly span multiple lines
 *
 * @namespace F3.TYPO3.Foo
 * @extends F3.TYPO3.Core.SomeOtherClass
 */

Example of a class doc comment with constructor

/**
 * @class F3.TYPO3.Foo.ClassWithConstructor
 *
 * This class has a constructor!
 *
 * @namespace F3.TYPO3.Foo
 * @extends F3.TYPO3.Core.SomeOtherClass
 *
 * @constructor
 * @param {String} id The ID which to use
 */

Method Definitions
Methods should be documented the following way:

Example of a method comment

...
F3.TYPO3.Core.Application = Ext.apply(new Ext.util.Observable, { // this is just an example class definition

/opt/local/.../DocBook/en/JavaScript.xml page 5 of 9

1

1

 5

 6

... propery definitions ...
/**
 * This is a method declaration; and the
 * explanatory text is followed by a newline.
 *
 * @param {String} param1 Parameter name
 * @param {String} param2 (Optional) Optional parameter
 * @return {Boolean} Return value
 */
aPublicMethod: function(param1, param2) {
return true;
},

/**
 * this is a private method of this class,
 * the private anotation marks them an prevent that they
 * are listed in the api doc. As they are private, they
 * have to start with an underscore as well.
 *
 * @return {void}
 * @private
 */
_sampleMethod: function() {
}
}
...

There should be a blank line between methods.

Contrary to what is defined in the FLOW3 PHP Coding Guidelines, methods which are public automatically
belong to the public API, without an @api annotation. Contrary, methods which do not belong to the public
API need to begin with an underscore and have the @private annotation.

Property Definitions
All properties of a class need to be properly documented as well, with an @type annotation. If a property is
private, it should start with an underscore and have the @private annotation at the last line of its doc
comment.

...
F3.TYPO3.Core.Application = Ext.apply(new Ext.util.Observable, { // this is just an example class definition
/**
 * Explanation of the property
 * which is followed by a newline
 *
 * @type {String}
 */
propertyOne: 'Hello',

/**
 * Now follows a private property
 * which starts with an underscore.
 *
 * @type {Number}
 * @private
 */
_thePrivateProperty: null,
...
}

Code Style
use single quotes(') instead of double quotes(") for string quoting

Multiline strings (using \) are forbidden. Instead, multiline strings should be written like this:

/opt/local/.../DocBook/en/JavaScript.xml page 6 of 9

'Some String' +
' which spans' +
' multiple lines'

There is no limitation on line length.

JavaScript Constants (true, false, null) should be written lowercase, and not uppercase.

Custom JavaScript Constants should be avoided.

Use a single var statement at the top of a method to declare all variables. Example:

function() {
var myVariable1, myVariable2, someText;
// now, use myVariable1,
}
TODO: Discuss the following (inline assignment):
function() {
var myVariable1 = Ext.getComponent(...),
 variable2, variable3;
}
-> i feel it makes the code more unreadable, so I would suggest to use variant 1.

We use a single TAB for indentation.

Use inline comments sparingly, they are often a hint that a new method must be introduced.

Inline Comments must be indented one level deeper than the current nesting level. Example:

function() {
var foo;
// Explain what we are doing here.
foo = '123';
}

White Spaces around control structures like if, else, ... should be inserted like in the FLOW3 CGLs:

if (myExpression) {
// if part
} else {
// Else Part
}

Arrays and Objects should never have a trailing comma after their last element,

Arrays and objects should be formatted in the following way:

[
{
foo: 'bar'
}, {
x: y
}
]

Method calls should be formatted the following way:

// for simple parameters:
new Ext.blah(options, scope, foo);
object.myMethod(foo, bar, baz);

// when the method takes a single parameter of type object as argument, and this object is specified directly in place:
new Ext.Panel({
a: 'b',
c: 'd'
});

// when the method takes more parameters, and one is a configuration object which is specified in place:

/opt/local/.../DocBook/en/JavaScript.xml page 7 of 9

 6.1

new Ext.blah(
{
foo: 'bar'
},
scope,
options
);

-> TODO: are there JS Code Formatters / Indenters, maybe the Spket JS Code Formatter?

Using JSLint to validate your JavaScript
JSLint is a JavaScript program that looks for problems in JavaScript programs. It is a code quality tool. When
C was a young programming language, there were several common programming errors that were not
caught by the primitive compilers, so an accessory program called lint was developed that would scan a
source file, looking for problems. jslint is the same for JavaScript.

JavaScript code ca be validated on-line at http://www.jslint.com/. When validating the JavaScript code,
"The Good Parts" family options should be set. For that purpose, there is a button "The Good Parts" to be
clicked.

Instead of using it online, you can also use JSLint locally, which is now described. For the sake of
convenience, the small tutorial bellow demonstrates how to use JSlint with the help of CLI wrapper to enable
recursive validation among directories which streamlines the validation process.

Download Rhino from http://www.mozilla.org/rhino/download.html and put it for instance into
/Users/john/WebTools/Rhino.

Download JSLint.js (@see attachment "jslint.js", line 5667-5669 contains the configuration we would
like to have, still to decide) (TODO)

Download jslint.php (@see attachment "jslint.php" TODO), for example into
/Users/fudriot/WebTools/JSLint

Open and edit path in jslint.php -> check variable $rhinoPath and $jslintPath

Add an alias to make it more convenient in the terminal:

alias jslint '/Users/fudriot/WebTools/JSLint/jslint.php

Now, you can use JSLint locally:

// scan one file or multi-files
jslint file.js
jslint file-1.js file-2.js

//scan one directory or multi-directory
jslint directory
jslint directory-1 directory-2

//scan current directory
jslint .

It is also possible to adjust the validation rules JSLint uses. At the end of file "jslint.js", it is possible to
customize the rules to be checked by JSlint by changing options' value. By default, the options are taken
over the book "JavaScript: The Good Parts" which is written by the same author of JSlint.

Below are the options we use for TYPO3 v5:

bitwise: true, eqeqeq: true, immed: true,newcap: true, nomen: false, onevar: true, plusplus: false, regexp: true, rhino: true, undef: false, white: false, strict: true

In case some files needs to be evaluated with special rules, it is possible to add a comment on the top of
file which can override the default ones:

/*jslint white: true, evil: true, laxbreak: true, onevar: true, undef: true, nomen: true, eqeqeq: true, plusplus: true, bitwise: true, regexp: true, newcap: true, immed: true */

/opt/local/.../DocBook/en/JavaScript.xml page 8 of 9

 6.2

 7

/*jslint white: true, evil: true, laxbreak: true, onevar: true, undef: true, nomen: true, eqeqeq: true, plusplus: true, bitwise: true, regexp: true, newcap: true, immed: true */

More information about the meaning and the reasons of the rules can be found at
http://www.jslint.com/lint.html

Event Handling
When registering an event handler, always use explicit functions instead of inline functions to allow
overriding of the event handler.

Additionally, this function needs to be prefixed with on to mark it as event handler function. Below follows
an example for good and bad code.

Good Event Handler Code

F3.TYPO3.Application.on('theEventName', this._onCustomEvent, this);

Bad Event Handler Code

F3.TYPO3.Application.on(
 'theEventName',
 function() {
 alert('Text');
 },
 this
);

All events need to be explicitely documented inside the class where they are fired onto with an @event
annotation.

Here follows an example:

F3.TYPO3.Core.Application = Ext.apply(new Ext.util.Observable, { // this is just an example class definition
/**
 * @event eventOne Event declaration
 */

/**
 * @event eventTwo Event with parameters
 * @param {String} param1 Parameter name
 * @param {Object} param2 Parameter name
 *
 * property1: description of property1
 * property2: description of property2
 *
 */
...
}

Additionally, make sure to document if the scope of the event handler is not set to this, i.e. does not point
to its class, as the user expects this.

ExtJS specific things
TODO

-> explain initializeObject

-> how to extend Data Stores (for example)

-> how to extend Ext components

-> datastore extended?

-> can be extended by using constructer() not initComponets() like it is for panels and so on

/opt/local/.../DocBook/en/JavaScript.xml page 9 of 9

 8 Unit Testing
TODO: http://developer.yahoo.com/yui/3/test/

