
/opt/local/.../DocBook/en/Architecture.xml page 1 of 6

 Chapter 1: 

 1 

 

1

3

Architecture
In this chapter, the basic architecture of the user interface is explained.

We have some key design goals we followed while creating this architecture:

Extensibility: TYPO3 is famous for its extensibility, and this of course should also apply to the TYPO3
Phoenix User Interface. In this chapter, the basic extensibility principles are explained.

Loading Order Independence: Often, big JavaScript applications are very fragile, or even break,
because of wrong inclusion order of their JavaScript files. Because our system is highly extensible,
much work has been done to make sure the whole system has only very small loading order
dependencies, i.e. for most files, the loading order is completely irrelevant, but still providing
predictable results.

JavaScript Modules
All JavaScript is encapsulated in so-called modules, which are packages of (JavaScript) functionality.
Modules are built in a way such that if you add or remove a module, there will be no JavaScript errors (if
the module itself does not contain syntax errors of course).

The base directory where all built-in TYPO3 Backend modules are located is in 
TYPO3/Public/Backend/JavaScript.

Each module has a Module Descriptor file (TODO: Name?) which is named ModulenameModule.js, i.e. the
module descriptor for the Content module can be found inside Content/ContentModule.js. The Module
Descriptor is a singleton and also acts as an event bridge for the module.

Every module descriptor can have the following two methods:

configure(F3.TYPO3.Core.Registry): this method should do all changes to the central registry
(which gets passed as argument) inside this method. See the sectioon on the Registry for more
explanation what it does. Essentially, the registry is just an extensible JSON structure which is used at
many places to configure the TYPO3 Backend User Interface.

initialize(F3.TYPO3.Core.Application): in this method, the module descriptor can register itself
to be called after another dependent module has been initialized, using the 
application.afterInitializationOf(moduleName, callback, scope) method.

Additionally, the module descriptor exposes the public API of this module.

And, of course it can also have private methods used to structure the code.

Let's look at an example for a module descriptor:

Example Module Descriptor

Ext.ns("F3.TYPO3.Dummy");

F3.TYPO3.Core.Application.createModule('F3.TYPO3.Dummy.DummyModule', {

configure: function(registry) {
registry.append('menu[main]', 'report', {
title: 'Report',
itemId: 'report'
});
},

initialize: function(application) {
application.afterInitializationOf('F3.TYPO3.UserInterface.UserInterfaceModule', function(userInterfaceModule) {

userInterfaceModule.addContentArea('report', 'dummy', {



/opt/local/.../DocBook/en/Architecture.xml page 2 of 6

3

4

1

2

3

4

 2 

userInterfaceModule.addContentArea('report', 'dummy', {
xtype: 'F3.TYPO3.Dummy.DummyContentArea',
name: 'Report'
});
userInterfaceModule.contentAreaOn('menu[main]/report', 'report', 'dummy');

}
});

Inside the configure method, a new module called report is being added to the registry.

The DummyModule needs the UserInterfaceModule to work correctly; that's why it expresses a
dependency inside the initialize method, using the 
application.afterInitializationOf(...) method. The specified callback function is only
executed if the UserInterfaceModule is present and has been loaded.

Now follows the other module's specific initialization code. The UserInterfaceModule has a
method addContentArea(mainTabName, name, configuration) which adds a new content area
to the specified main tab name.

The UserInterfaceModule has another method contentAreaOn(nameOfActivatedElement, 
mainTabName, name), which is used to show the content area if a certain element, specified
through the first parameter, is activated.

TODO: Separate Core from the rest, and move to other package!

TODO: add doc comments to example module descriptor

The Registry
The TYPO3 backend is mainly extensible because of a central component which stores how the User
Interface is built together: the registry. This is a singleton object available inside 
F3.TYPO3.Core.Registry, and is thus accessible in all components.

The Registry is an extensible JSON structure.

It works in two steps: First, all modules can add / change things inside the registry inside the configure
method of their Module Descriptor. After that, the registry is compiled, and after that, is just a regular JSON
structure. Let's follow an example what the registry does, so you can gain an intuitive understanding of it:

// Inside a Module Descriptor
configure: function(registry) {
registry.set('some/path/foo', {title: 'Hello'}); 
// this is the same as:
registry.set('some/path/foo/title', 'Hello');
}
// after the registry is compiled, it looks like:
{ some: { path: {foo: {title: 'Hello'}}}}

So far, this is what you would expect. Now follows an example which shows the interaction between
multiple modules:

// Inside a Module Descriptor
configure: function(registry) {
registry.set('some/path/foo/title', 'World', 10);
}
// Inside another module descriptor:
configure: function(registry) {
registry.set('some/path/foo', {title: 'Hello'});
}

// after the registry is compiled, it looks like:
{ some: { path: {foo: {title: 'World'}}}}

If two modules try to set the same key, somehow it has to be determined which value "wins" -- and as we
do not want to depend on the loading order, we have added the concept of priorities to the registry. In the



/opt/local/.../DocBook/en/Architecture.xml page 3 of 6

Note

do not want to depend on the loading order, we have added the concept of priorities to the registry. In the
above example, you see that in the result, the string World is displayed because it has a priority of 10, and
the other call to set the same key has no priority set (which defaults to a priority value of zero). If the two 
registry.set calls were executed in a different order, the result after the compilation would still be the
same. So, priorities make sure the registry behaves deterministically.

Let's say we want to remove an element from the registry -- for that, there is the registry.remove call:

// Inside a Module Descriptor
configure: function(registry) {
registry.remove('some/path/foo/description', 'foo');
}
// Inside another module descriptor:
configure: function(registry) {
registry.set('some/path/foo', {
title: 'Hello',
description: ' This is a long description'
});
}

// after the registry is compiled, it looks like:
{ some: { path: {foo: {title: 'Hello'}}}}

What happened here? Although the element is removed before it is actually inserted, the result is still what
one would expect. If you look closely, you will notice that we did not specify a priority for registry.remove
-- and still the result is what we want. The reason is that the registry processes all operations in a strictly
defined order -- and the delete operation is processed after all other operations. For a single operation,
the priorities are then used to determine the processing order.

All registry operations can deal with priorities, but we left them out to not complicate the
examples below.

So far, you have seen how to build JSON objects with the registry -- and now we will look at creating arrays
with the registry. In the next example, you will see a simple invocation of the registry.append method.

// Inside a Module Descriptor
configure: function(registry) {
registry.append('menu/main', 'edit', {title: 'Edit the element'});
}
// after the registry is compiled, it looks like:
{
menu: {
main: [
{
title: 'Edit the element',
key: edit
}
]
}
}

So, what happened now? Because we used append, the registry assumes that menu/main is an array, and
no object anymore. The second argument of append is an array key, which can be used to reference this
array element later inside a path.

When you look at the result, you will see that menu/main is really an array now, and the array element is
again an object with the title we specified. Additionally, the array element gets the array key inserted under
the special name key. Let's look how this array key can be used to modify objects:

// Inside a Module Descriptor
configure: function(registry) {
registry.append('menu/main', 'edit', {title: 'Edit the element'});
}
// Inside another module descriptor:



/opt/local/.../DocBook/en/Architecture.xml page 4 of 6

Note

 2.1 

// Inside another module descriptor:
configure: function(registry) {
registry.set('menu/main/edit/title', 'Element bearbeiten');
}

// after the registry is compiled, it looks like:
{
menu: {
main: [
{
title: 'Element bearbeiten',
key: edit
}
]
}
}

Here, you see that set is used to change the title of the edit element inside the array (again, the order of
the registry statements does not matter).

There is also a prepend method which inserts an element at the beginning of an array,
and not at the end like append.

Often, one does not want to insert an element at the end or at the beginning of an array, but somewhere
before or after an element. The registry supports the two operations insertAfter and insertBefore for
exactly that: To insert a sibling of a given node. Let's look at an example:

// Inside a Module Descriptor
configure: function(registry) {
registry.insertAfter('menu/main/edit', 'preview', {title: 'Preview'});
}
// Inside another module descriptor:
configure: function(registry) {
this.registry.append('menu/main', 'edit', {title: 'Edit'});
this.registry.append('menu/main', 'delete', {title: 'Delete'}, 10);
}

// after the registry is compiled, it looks like:
{
menu: {
main: [{
title: 'Edit',
key: 'edit'
}, {
title: 'Preview',
key: 'preview'
}, {
title: 'Delete',
key: 'delete'
}]
}
}

Here, you see that "preview" has been inserted after "edit".

Logical objects and the "children" property
If one looks at JSON objects which form a tree structure, they often look like the following:

{
menu: {
title: 'Home',
children: [
{
key: 'company',
title: 'Our Company',



/opt/local/.../DocBook/en/Architecture.xml page 5 of 6

 2.2 

 3 

children: [
{
key: 'partners',
title: 'Partners'
}
]
}, {
id: ...,
title: ...
}
]
}
}

So basically, an object which has children often stores these in the special property children. Now, let's
imagine we want to add a new child to company using the registry, then this is possible with 
registry.append('menu/children/company/children', 'investor-relations', {title:
'Investor Relations'}). However, this is quite unreadable because of the many .../children/...
sections in the path. For that, we invented a little syntactic sugar, so you can re-write 
menu/children/company/children as menu[]/company[], which is a lot more readable.

Now imagine we would rename the children property to childNodes -- in this case, instead of writing 
menu/childNodes/company/childNodes, one could write menu[childNodes]/company[childNodes].
Although this is semantically equivalent, it is better readable because it says: "I want to go to the 
childNodes property of the menu object, and from there I want to go to the childNodes property of the 
company object."

So, if you go to a real sub-object, use the slash as delimiter, but if you just traverse into a more complex
object, use the bracket-syntax.

special paths in the registry
TODO: maybe this should be moved somewhere else, later.

This section explains the basic layout and structure of the registry.

menu: Contains all menu definitions

main: Contains the main menu displayed in the top area of the Backend

schema/ContentType: schema definition for the content type

service: describes the endpoints which should be used for showing, updating, ceating and
deleting data.

properties: describes for each property its type and the validations which apply.

form: Configuration for forms

type/ContentType: Form definitions for the given content type

standard: standard form definition which is used by default

There might be additional form definitions for specific places in the backend.

editor/Type: Editor configuration for the given type.

Events
The different components of the user interface communicate via events. A module fires some events, and
other modules listen to these events and do some specific actions.

Every Module Descriptor inherits from Ext.util.Observable, so there can be events thrown on these
objects, and one can listen to these events. Here is a quick example how that works, which should be



/opt/local/.../DocBook/en/Architecture.xml page 6 of 6

 4 

 5 

 6 

 6.1 

 6.2 

familiar to everybody knowing Ext.util.Observable:

// Register an event listener
F3.TYPO3.Core.Application.on('logout', this._onLogout, this);

// at some other place, the event is fired, which triggers all registered event listeners:
F3.TYPO3.Core.Application.fireEvent('logout');

Some events are only relevant to the internals of the module, and should not be exposed to other modules.
These events should, by convention, start with an underscore character, and in their documentation block,
have the @private annotation.

TODO: should we add some section about sub-namespaces inside event names?

Forms

Exception Handling

Custom widgets explained
-> extra chapter

BreadcrumbMenu


