
FLOW3
Robert Lemke

FLOW3
Robert Lemke
Copyright © 2007, 2008, 2009 Robert Lemke

Abstract

FLOW3 is a modern application framework for enterprise-grade PHP applications. This reference
describes FLOW3's main features.

iv

Table of Contents
1. FLOW3 .. 1

1. Introduction .. 1
1.1. Overview ... 1

2. FLOW3 Bootstrap .. 2
2.1. Application Context .. 2
2.2. Boot Sequence .. 2

3. Packages ... 2
3.1. Files and Locations ... 3
3.2. Package Keys ... 4
3.3. Importing and Installing Packages .. 4
3.4. Package Manager ... 5
3.5. Creating a New Package ... 5
3.6. Package Meta Information ... 5

4. Object Framework .. 6
4.1. Creating Objects .. 7
4.2. Object Registration and API ... 11
4.3. Object dependencies ... 12
4.4. Configuring objects .. 16

5. Configuration Framework .. 22
5.1. Configuration Files ... 22
5.2. Defining Configuration .. 23
5.3. Accessing Configuration ... 25

6. Resource Manager ... 26
7. MVC Framework .. 27

7.1. Introduction ... 27
7.2. Request and Response .. 30
7.3. Controller .. 31
7.4. View ... 32
7.5. Helpers ... 32
7.6. Model .. 32
7.7. Routing ... 32
7.8. CLI request handling .. 32

8. Cache Framework .. 33
9. Error and Exception Handling ... 33
10. AOP Framework ... 33

10.1. Introduction .. 33
10.2. Aspects ... 36
10.3. Pointcuts ... 37
10.4. Declaring advice .. 40
10.5. Implementing advice .. 41
10.6. Introductions .. 43
10.7. Implementation details .. 44

11. Persistence Framework ... 45
11.1. Introductory Example ... 45
11.2. On the priciples of DDD ... 46
11.3. Persistence-related annotations .. 47
11.4. Inside the Persistence Framework .. 47

A. Coding Guidelines .. 49
1. Coding Guidelines .. 49

1.1. Code formatting and layout .. 49
1.2. Documentation .. 55
1.3. Coding .. 59

v

List of Figures
1.1. Model-View-Controller Pattern .. 27
1.2. Example of a Web Request-Response Workflow ... 30
1.3. Control flow of an advice chain .. 42
1.4. Proxy building process ... 44
1.5. The objects of the Blog domain model .. 45
1.6. Object persistence process .. 48
1.7. Object querying and reconstitution process ... 48

vi

List of Tables
1.1. Supported scopes ... 7
1.2. Persistence-related code annotations .. 47

vii

List of Examples
1.1. Package.xml .. 6
1.2. Retrieving the Object Factory through dependency injection 8
1.3. A simple address book .. 9
1.4. Passing constructor arguments ... 10
1.5. Sample class with lifecycle methods ... 11
1.6. A simple example for Constructor Injection .. 13
1.7. Objects.yaml file for Constructor Injection .. 13
1.8. A simple example for Setter Injection .. 13
1.9. Objects.yaml file for Setter Injection .. 13
1.10. The preferred way of Setter Injection, using an inject method 14
1.11. Example for the magic injectSettings method ... 15
1.12. Marking a setter-injected dependency as optional .. 15
1.13. Sample Objects.yaml file .. 16
1.14. Sample Objects.php file ... 17
1.15. Sample scope annotation ... 17
1.16. A simple Greeter class ... 18
1.17. Code using the object F3_MyPackage_Greeter ... 18
1.18. Objects.yaml file for object replacement .. 18
1.19. The Greeter object type ... 18
1.20. Code using the object type F3\MyPackage\GreeterInterface 18
1.21. Objects.yaml file for object type definition .. 19
1.22. Sample class for Constructor Injection .. 19
1.23. Sample configuration for Constructor Injection ... 19
1.24. Sample class for Setter Injection .. 20
1.25. Sample configuration for Setter Injection ... 20
1.26. Injecting an object specified in the settings .. 20
1.27. Example Settings.yaml of MyPackage ... 20
1.28. Nesting object configuration ... 21
1.29. Turning off autowiring support in Objects.yaml ... 21
1.30. Sample configuration for a Custom Factory ... 21
1.31. YAML configuration for a Custom Factory with default arguments 21
1.32. PHP code using the custom factory .. 21
1.33. Objects.yaml configuration of the initialization and shutdown method 22
1.34. Example for a package-level Settings.yaml .. 23
1.35. Example for a package-level Settings.php ... 24
1.36. Settings declaration using the object and the array syntax 24
1.37. Settings declaration with the object syntax and virtual setters 24
1.38. Example for using specialClassNameAndPaths ... 25
1.39. Example for using specialClassNameAndPaths ... 25
1.40. Settings Injection ... 26
1.41. Retrieving settings ... 26
1.42. Hello World! controller .. 28
1.43. Hello World! view ... 28
1.44. Improved Hello World! controller ... 28
1.45. Sample file structure .. 29
1.46. Some FLOW3 CLI command specifications ... 33
1.47. Giving options to FLOW3 CLI requests ... 33
1.48. Some FLOW3 CLI commands .. 33
1.49. Declaration of an aspect .. 36
1.50. Declaration of a named pointcut ... 37
1.51. method() pointcut designator .. 38
1.52. class() pointcut designator .. 38
1.53. within() pointcut designator ... 38
1.54. classTaggedWith() pointcut designator .. 39
1.55. methodTaggedWith() pointcut designator ... 39

viii

1.56. setting() pointcut designator ... 39
1.57. filter() pointcut designator ... 39
1.58. Combining pointcut expressions ... 40
1.59. Declaration of a before advice .. 40
1.60. Declaration of an after returning advice ... 41
1.61. Declaration of an after throwing advice ... 41
1.62. Declaration of an after advice ... 41
1.63. Declaration of an around advice ... 41
1.64. Simple logging with aspects ... 42
1.65. Implementation of an around advice ... 43
1.66. Declaring introductions ... 44
1.67. The Blog's addPost() method ... 45
1.68. Persistence-related annotations in the Blog class ... 46
1.69. Code of a simple BlogRepository .. 46
A.1. The FLOW3 standard file header ... 50
A.2. Correct use of tabs and spaces ... 50
A.3. Correct naming of classes ... 51
A.4. Incorrect naming of classes ... 51
A.5. Correct naming of interfaces .. 52
A.6. Incorrect naming of interfaces .. 52
A.7. Correct naming of exceptions ... 52
A.8. Correct naming of methods .. 52
A.9. Correct naming of variables ... 53
A.10. Incorrect naming of variables ... 53
A.11. Correct naming of constants .. 53
A.12. File naming in FLOW3 ... 54
A.13. String literals ... 54
A.14. String literals enclosed by double quotes .. 54
A.15. Variable substitution .. 54
A.16. Concatenated strings ... 54
A.17. Multi-line strings .. 55
A.18. Classes ... 55
A.19. if statements ... 55
A.20. Standard file level documentation block .. 56
A.21. Suggested configuration for Subversion in ~/.subversion/config 56
A.22. Standard class documentation block ... 57
A.23. Standard interface documentation block .. 57
A.24. Standard exception documentation block .. 57
A.25. Standard variable documentation block ... 58
A.26. Standard method documentation block ... 58
A.27. Encoding statement for .php files .. 59
A.28. Bad coding smell: Comments ... 60
A.29. Smells better! .. 60

1

Chapter 1. FLOW3

1. Introduction
FLOW3 is a PHP-based application framework. It is especially well-suited for enterprise-
grade applications and explicitly supports Domain-Driven Design, a powerful software
design philosophy. Convention over configuration, Test-Driven Development, Continuous
Integration and an easy-to-read source code are other important principles we follow for the
development of FLOW3.

Although we created FLOW3 as the foundation for the TYPO3 Content Management System,
its approach is general enough to be useful as a basis for any other PHP application. We're
happy to share the FLOW3 framework with the whole PHP community and are looking
forward to the hundreds of new features and enhancements contributed as packages by
other enthusiastic developers. In fact most of the packages which will be developed for the
TYPO3 CMS can be used in any other FLOW3-based application. In essence this reflects
the vision of the TYPO3 project: "Inspiring People to Share".

This reference describes all features of FLOW3 and provides you with in-depth information.
If you'd like to get a feeling for FLOW3 and get started quickly, we suggest that you try out
our Getting Started tutorial first.

Note
Please note that FLOW3 is still under heavy development. Although we hope
that the documentation is at least accurate and up to date, it is by no means
complete and most likely not proof-read. If you find errors or would like to help us
improving the documentation, we're happy to hear from you on our mailing list!

1.1. Overview
The FLOW3 framework is composed of the following submodules:

• The FLOW3 bootstrap takes care of configuring and initializing the whole framework.

• The Package Manager allows you to download, install, configure and uninstall packages.

• The Object Manager is in charge of building, caching and combining objects.

• The Configuration Framework reads and cascades various kinds of configuration from
different sources and provides access to it.

• The Resource Manager contains functions for providing, caching, securing and retrieving
resources.

• The MVC Framework takes care of requests and responses and provides you with a
powerful, easy-to use Model-View-Controller implementation.

• The Cache framework provides different kinds of caches with can be combined with a
selection of cache backends.

• The Error module handles errors and exceptions and provides utility classes for this
purpose.

• The Log module provides simple but powerful means to log any kind of event or signal into
different types of backends.

• The Signal Slot module implements the event-driven concept of signals and slots through
AOP aspects.

• The Validation module provides a validation and filtering framework with built-in rules as
well as support for custom validation of any object.

• The Property module implements the concept of property editors and is used for setting
and retrieving object properties.

• The Reflection API complements PHP's built-in reflection support by advanced annotation
handling and a cached reflection service.

2

• The AOP Framework enables you to use the powerful techniques of Aspect Oriented
Programming.

• The Persistence module allows you to transparently persist your objects following
principles of Domain Driven Design.

• The Security Framework enforces security policies and provides an API for managing
those.

• The Session Framework takes care of session handling and storing session information
in different backends

• The Locale service manages languages and other regional settings and makes them
accessible to other packages and FLOW3 sub packages.

• The Utility module is a library of useful general-purpose functions for file handling,
algorithms, environment abstraction and more.

If you are overwhelmed by the amount of information in this reference, just keep in mind that
you don't need to know all of it to write your own FLOW3 packages. You can always come
back and look up a specific topic once you need to know about it - that's what references are
for. But even if you don't need to know everything, we recommend that you get familiar with
the concepts of each module and read the whole manual. This way you make sure that you
don't miss any of the great features FLOW3 provides and hopefully feel inspired to produce
clean and easy-maintainable code.

Tip
A strong coffee helps most people over even the longest documentation.

2. FLOW3 Bootstrap
Note
This section is work in progress and only contains some bullet points for the later
documentation.

2.1. Application Context
The FLOW3 Framework can be launched in different application contexts. An application
context basically is a set of configuration which has been defined for a certain context.
By default, FLOW3 provides configuration for the Production, Development, Testing,
and Staging context. More contexts may be defined by just adding configuration for it
accordingly (refer to the Configuration section to learn more about configuration).

The FLOW3 boot strap (i.e. the class \F3\FLOW3\FLOW3) is always instantiated in a
single application context. By default (when calling the index.php file) the context is
Production. In the standard distribution a file index_dev.php exists which runs FLOW3
in the Development context.

2.2. Boot Sequence
At the time of this writing, the sequence in which the various modules of FLOW3 are initialized
is hardcoded into the bootstrap. The solution we aim for is, however, a more flexible and
cleaner approach which is allows the modules to register themselves for initialization.

3. Packages
FLOW3 is a package-based system. In fact, FLOW3 itself is just a package as well - but
obviously an important one. Packages act as a container for different matters: Most of them
contain PHP code which adds certain functionality, others only contain documentation and
yet other packages consist of templates, images or other resources. The TYPO3 project [???]

???
???

3

hosts a package repository which acts as a convenient hub for interchanging FLOW3 based
packages with other community members.

Note
At the time of this writing the package repository for FLOW3 is still in the planning
phase.

3.1. Files and Locations
The FLOW3 package directory structure follows a certain convention which has the
advantage that you don't need to care about any package-related configuration. If you put
your files into the right directories, everything will just work.

The suggested directory layout of a FLOW3 package is as follows:

[PackageName] Classes This directory contains the actual source code for
the package. Package authors are free to add (only!)
class or interface files directly to this directory or add
subdirectories to organize the content if necessary.
All classes or interfaces below this directory are
handled by the autoloading mechanism and will be
registered at the object manager automatically (and
will thus be considered "registered objects").

Configuration All kinds of configuration which are delivered with the
package reside in this directory. The configuration
files are immutable and must not be changed
by the user or administrator. The most prominent
configuration files are the Objects.yaml file which
may be used to configure the package's objects and
the Settings.yaml file which contains general
user-level settings.

Documentation Holds the package documentation. The English
manual must be located in a subdirectory called
Manual/en/. The format for manuals is DocBook
[???]. Please refer to the Documentor's Guide for
more details about the directories and files within this
directory.

Meta A folder which provides some meta information
about the package.

Package.xml This mandatory file contains
some basic information about
the package, such as title,
description, author, constraints,
version number and more. You
should take great care to keep this
information updated.

Resources Contains static resources the package needs,
such as library code, template files, graphics, ...
In general, there is a distinction between public
and private resources. While public resources will
be mirrored into FLOW3's Public directory by
the Resource Manager (and therefore become
accessible from the web) all resources in the
Private directory remain protected.

Private Contains private resources for the
package.

???
???

4

Public Contains private resources for the
package.

Although it is up to the package author to name the
directories, we suggest the following conventions for
directories below Private and Public:

Media This directory holds images, PDF,
Flash, CSS and other files that will be
delivered to the client directly without
further processing.

Templates Template files used by the package
should go here. If a user wants to
modify the template it will end up
elsewhere and should be pointed to
by some configuration setting.

PHP Should hold any PHP code that is
an external library which should not
be handled by the object manager
(at least not by default), is of
procedural nature or doesn't belong
into the classes directory for any
other reason.

Java Should hold any Java code needed
by the package. Repeat and rinse for
Smalltalk, Modula, Pascal, ... ;)

More directories can be added as needed.

Tests Holds the unit tests for the package. Test cases will
be recognized by the Testing package if they follow
the required naming convention.

As already mentioned, all classes which are found in the Classes directory will be detected
and registered. However, this only works if you follow the naming rules equally for the class
name as well as the file name. An example for a valid class name is \F3\MyPackage
\Controller\DefaultController while the file containing this class would be named
F3_MyPackage_Controller_DefaultController.php.

All details about naming files, classes, methods and variables correctly can be found in the
FLOW3 Coding Guidelines. You're highly encouraged to read (and follow) them.

3.2. Package Keys
Package keys are used to uniquely identify packages and provide them with a namespace
for different purposes. They save you from conflicts between packages which were provided
by different parties.

Any public package needs to have a unique package key which you need to register at
forge.typo3.org [http://typo3.org] prior to use. But even if you develop a package for private
use only, it's clever to register a package key for it.

3.3. Importing and Installing Packages
At this time the features for import and installation of packages have not been implemented.
The current behavior is that all directories which are found below the Packages folder are
assumed to be packages and are active by default. Just make sure that you created a
Package.xml file in the Meta directory of your package.

http://typo3.org
http://typo3.org

5

3.4. Package Manager
The Package Manager is in charge of downloading, installing, configuring and activating
packages and registers their objects and resources.

Note

In its current form, the package manager only provides the basic functionality
which is necessary to use packages and their objects. More advanced features
like installing or configuring packages are of course planned.

3.5. Creating a New Package
Just create the package folder and subdirectories manually and copy & adapt a
Package.xml file from one of the other packages. Apart from that no further steps are
necessary.

3.6. Package Meta Information
All packages need to provide some meta information to the package manager. This data is
stored in a file called Package.xml which resides in the Meta directory of a package. The
format of this file follows a RelaxNG schema which is available at http://typo3.org/ns/2008/
flow3/package/Package.rng.

Here is an example of a valid Package.xml file:

http://typo3.org/ns/2008/flow3/package/Package.rng
http://typo3.org/ns/2008/flow3/package/Package.rng

6

Example 1.1. Package.xml

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<package xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://typo3.org/ns/2008/flow3/package" version="1.0">
 <key>TestPackage</key>
 <title>Test Package</title>
 <description>The test package to demonstrate the features of Package.xml</description>
 <version>0.0.1</version>
 <state>Alpha</state>
 <categories>
 <category>System</category>
 <category>Testing</category>
 </categories>
 <parties>
 <person role="LeadDeveloper">
 <name>David Brühlmeier</name>
 <email>typo3@bruehlmeier.com</email>
 </person>
 <person role="Maintainer">
 <name>John Smith</name>
 <email>john@smith.com</email>
 <organisation>Smith Ltd.</organisation>
 <repositoryUserName>jsmith</repositoryUserName>
 </person>
 <organisation role="Sponsor">
 <name>John Doe Co.</name>
 <email>info@johndoe.com</email>
 <website>www.johndoe.com</website>
 </organisation>
 </parties>
 <constraints>
 <depends>
 <package minVersion="1.0.0" maxVersion="1.9.9">FLOW3</package>
 <system type="PHP" minVersion="5.1.0" />
 <system type="PHPExtension">xml</system>
 <system type="PHPExtension">pgsql</system>
 <system type="PEAR" minVersion="1.5.1">XML_RPC</system>
 </depends>
 <conflicts>
 <system type="OperatingSystem">Windows_NT</system>
 </conflicts>
 <suggests>
 <system type="Memory">16M</system>
 </suggests>
 </constraints>

 <!-- The following elements are only used and generated by the repository -->
 <repository>
 <downloads>
 <total>3929</total>
 <thisVersion>444</thisVersion>
 </downloads>
 <uploads>
 <upload>
 <comment>Just a comment...</comment>
 <repositoryUserName>jsmith</repositoryUserName>
 <timestamp>2008-04-22T17:23:09Z</timestamp>
 </upload>
 <upload>
 <comment/>
 <repositoryUserName>jsmith</repositoryUserName>
 <timestamp>2008-04-19T03:54:13Z</timestamp>
 </upload>
 </uploads>
 </repository>
</package>

Note

If you are working with Eclipse, you might want to install the DEV3 plug-in
[http://dev3.org] which - among other tools - provides you with a convenient
Package.xml editor

4. Object Framework
The lifecycle of objects are managed centrally by the object framework. It offers convenient
support for Dependency Injection and provides some additional features such as a caching
mechanism for objects. Because all packages are built on this foundation it is important to
understand the general concept of objects in FLOW3 and the container.

http://dev3.org
http://dev3.org

7

Tip
A very good start to understand the idea of Inversion of Control and Dependency
Injection is reading Martin Fowler's article [http://martinfowler.com/articles/
injection.html] on the topic.

4.1. Creating Objects
In simple, self-contained applications, creating objects is as simple as using the
new operator. However, as the program gets more complex, a developer is
confronted with solving dependencies to other objects, make classes configurable
(maybe through a factory method) and finally assure a certain scope for the object
(such as Singleton or Prototype). Howard Lewis Shipexplained this circumstances
nicely in his blog [http://tapestryjava.blogspot.com/2004/08/dependency-injection-mirror-of-
garbage.html] (quite some time ago):

Once you start thinking in terms of large numbers of objects, and a whole lot
of just in time object creation and configuration, the question of how to create
a new object doesn't change (that's what new is for) ... but the questions
when and who become difficult to tackle. Especially when the when is very
dynamic, due to just-in-time instantiation, and the who is unknown, because
there are so many places a particular object may be used.

The Object Manager is responsible for object building and dependency resolution (we'll
discover shortly why dependency injection makes such a difference to your application
design). In order to fulfill its task, it is important that all objects are instantiated only through
the object framework.

4.1.1. Object Scopes
Objects live in a specific scope. The most commonly used are prototype and singleton:

Table 1.1. Supported scopes

Scope Description

singleton (default) The object instance is unique during one
request - each injection by the Object
Manager or explicit call of getObject
returns the same instance. A request can be
an HTTP request or a run initiated from the
command line.

prototype The object instance is not unique - each
injection or call of the Object Factory's
create method returns a fresh instance.

session Not yet implemented The object instance is unique during the
whole user session - each injection or
getObject call returns the same instance.

In PHP, objects of the scope prototype are created with the new operator:
$myFreshObject = new \F3\MyPackage\MyClassName;

In contrast to Prototype, the Singleton design pattern ensures that only one instance of a
class exists at a time. In PHP the Singleton pattern is often implemented by providing a static
function (usually called getInstance), which returns a unique instance of the class:
/**
 * Implementation of the Singleton pattern
 */
class ASingletonClass {

 protected static $instance;

 public static function getInstance() {
 if (!is_object(self::$instance)) {
 self::$instance = $this;

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
http://tapestryjava.blogspot.com/2004/08/dependency-injection-mirror-of-garbage.html
http://tapestryjava.blogspot.com/2004/08/dependency-injection-mirror-of-garbage.html
http://tapestryjava.blogspot.com/2004/08/dependency-injection-mirror-of-garbage.html

8

 }
 return self::$instance;
 }
}

Although this way of implementing the singleton will possibly not conflict with the Object
Manager, it is counterproductive to the integrity of the system and might raise problems with
unit testing (sometimes Singleton is referred to as an Anti Pattern). The above examples are
not recommended for the use within FLOW3 applications.

The scope of an object is determined from its configuration (see also: Configuring Objects).
The recommended way to specify the scope is the @scope annotation:
namespace F3\MyPackage;

/**
 * A sample class
 *
 * @scope prototype
 */
class SomeClass {
}

Singleton is the default scope and is therefore assumed if no @scope annotation or other
configuration was found.

4.1.2. Creating Prototypes
The instantiation of classes must be handled by the object framework to assert full control
over the object lifecycle. In order to instantiate a class or retrieve an existing instance of a
class, you'll have to call an API function instead of using the new operator. To create a fresh
instance of an object just call the Object Factory's create method:
$myFreshObject = $objectFactory->create('F3\MyPackage\MyClassName');

The Object Factory (\F3\FLOW3\Object\FactoryInterface) itself is a Singleton and
can be acquired like any other object of that scope (see next section).

Analog to new it is possible to pass arguments a constructor of the class being instantiated
- they are simply passed as additional arguments to the create method:
$myFreshObject = $objectFactory->create('F3\MyPackage\MyClassName', 'first argument', $secondArgument, 42, $fourthArgument);

4.1.3. Retrieving Singletons
The Object Manager maintains a registry of all instantiated singletons and ensures that
only one instance of each class exists. The preferred way to retrieve a singleton object is
dependency injection:

Example 1.2. Retrieving the Object Factory through dependency
injection
namespace F3\MyPackage;

/**
 * A sample class
 */
class SampleClass {

 /**
 * @var \F3\FLOW3\Object\FactoryInterface
 */
 protected $objectFactory;

 /**
 * Constructor.
 * The Object Factory will automatically be passed (injected) by the object framework on
 * instantiating this class.
 *
 * @param \F3\FLOW3\Object\FactoryInterface $objectFactory A reference to the object factory
 */
 public function __construct(\F3\FLOW3\Object\FactoryInterface $objectFactory) {
 $this->objectFactory = $objectFactory;
 }
}

Once the SampleClass is being instantiated, the object framework will automagically pass
a reference to the Object Factory (which is an object of scope singleton) as an argument to
the constructor. This kind of dependency injection is called Constructor Injection and will be
explained - together with other kinds of injection - in one of the later sections.

9

Although dependency injection is what you should strive for, it might happen that you need
to retrieve object instances directly. The ObjectManager provides methods for retrieving
object instances for these rare situations. First, you need an instance of the ObjectManager
itself, again by taking advantage of constructor injection:

public function __construct(\F3\FLOW3\Object\ManagerInterface $objectManager) {
 $this->objectManager = $objectManager;
}

To explicitly retrieve an object instance use the getObject() method:

$myObjectInstance = $objectManager->getObject('F3\MyPackage\MyClassName');

Like with the ObjectFactory's create method, it is possible to pass arguments to the
constructor of the object class just by adding them to the getObject() call. However
passing arguments to a Singleton object makes only sense on the first call when the instance
is actually created. On all consecutive calls the arguments are just ignored.

4.1.4. Passing constructor arguments

In most cases an object class will live in the Singleton scope and at most requires a
few dependencies passed to its constructor. However, there are times when it becomes
necessary to pass dynamic values as constructor arguments, especially when the object
represents an entity and its instances are not unique (Prototype scope). Consider the
following classes:

Example 1.3. A simple address book

namespace F3\Address;

/**
 * A simple address book
 */
class AddressBook {

 protected $addresses = array();

 public __construct(\F3\iCal\iCalConnectorInterface $iCalConnector) {
 ...
 }

 public addAddress(\F3\Address\Address $address) {
 $this->addresses[] = $address;
 }
}

/**
 * An address
 *
 * @scope prototype
 */
class Address {

 public __construct($street, $zip, $town, $country) {
 ...
 }
}

This is admittedly not the fanciest implementation of an address book, but it should
demonstrate two things:

• The class \F3\Address\AddressBook is supposed to be a Singleton and obviously
depends on a third object type \F3\iCal\iCalConnectorInterface which is possibly
solved by Dependency Injection (will be explained in a later section).

• The class \F3\Address\Address represents the address entity and its instances must
not be unique - we surely want more than one address. The Address object also expects
a few parameters passed to its constructor.

The following code demonstrates how this address book can be used and constructor
arguments are passed to the Address entity:

10

Example 1.4. Passing constructor arguments

 # Explicitly fetch a unique instance of the address book (but better use Dependency Injection ...):
$myAddressBook = $objectManager->getObject('F3\Address\AddressBook');

 # Create two new addresses and add them to the address book:
$newAddress = $objectFactory->create('F3\Address\Address', 'Tryggevældevej', '2720', 'København', 'DK');
$myAddresbook->addAddress($newAddress);

$newAddress = $objectFactory->create('F3\Address\Address', 'An den Brodbänken', '21335', 'Lüneburg', 'DE');
$myAddresbook->addAddress($newAddress);

4.1.5. Lifecycle methods

The lifecycle of an object goes through different stages. It boils down to the following order:

1. Solve dependencies for constructor injection

2. Create an instance of the object class

3. Solve and inject dependencies for setter injection

4. Live a happy object-life and solve exciting tasks

5. Dispose the object instance

Your object might want to take some action after certain of the above steps. Whenever one
of the following methods exists in the object class, it will be invoked after the related lifecycle
step:

1. No action after this step

2. During instantiation the function __construct() is called (by PHP itself), dependencies
are passed to the constructor arguments

3. After all dependencies have been injected (through constructor- or setter injection) the
object's initialization method is called. The name of this method is configurable and it is
called regardless of whether any dependencies have been injected or not

4. During the life of an object no special lifecycle methods are called

5. Before destruction of the object, the function shutdownObject is called. The name of
this method is also configurable.

6. On disposal, the function __destruct() is called (by PHP itself)

We strongly recommend that you use the shutdownObject method instead of PHP's
__destruct method for shutting down your object. If you used __destruct it might happen
that important parts of the framework are already unavailable. Here's a simple example with
all kinds of lifecycle methods:

11

Example 1.5. Sample class with lifecycle methods
class Foo {

 protected $bar;
 protected $identifier = 'Untitled';

 public function __construct() {
 echo ('Constructing object ...');
 }

 public function injectBar(\F3\MyPackage\BarInterface $bar) {
 $this->bar = $bar;
 }

 public function setIdentifier($identifier) {
 $this->identifier = $identifier;
 }

 public function intializeObject() {
 echo ('Initializing object ...');
 }

 public function shutdownObject() {
 echo ('Shutting down object ...')
 }

 public function __destruct() {
 echo ('Destructing object ...');
 }
}

Constructing object ...
Initializing object ...
Shutting down object ...
Destructing object ...

4.2. Object Registration and API

4.2.1. Object Framework API
The object framework provides a lean API for registering, configuring and retrieving instances
of objects. Some of the methods provided are exclusively used within the FLOW3 package
or in unit tests and should possibly not be used elsewhere. By offering Dependency Injection,
the object framework helps you to avoid creating rigid interdependencies between objects
and allows for writing code which is hardly or even not at all aware of the framework it is
working in. Calls to the Object Manager should therefore be the exception.

For a list of available methods please refer to the API documentation of the interface
F3\FLOW3\Object\ManagerInterface.

4.2.2. Object names and types
By default, the name of an object is identical to the PHP class which contains the object's
code. A class called F3\MyPackage\MyImplementation will be automatically available
as an object with the exact same name. Every part of the system which asks for an object
with a certain name will therefore - by default - get an instance of the class of that name. It
is possible to replace the original implementation of an object by another one. In that case
the class name of the new implementation will naturally differ from the object name which
stays the same at all times. In these cases it is important to be aware of the fine difference
between an object name and a class name.

If the object name equals the name of a PHP interface, it is often referred to as a object
type. An interface called F3\MyPackage\MyInterface will be available as an object of
the same name as long as there exists one class implementing that interface. Object types
can be created and retrieved like regular objects:

$objectTypeInstance = $objectFactory->create('F3\SomePackage\SomeInterfaceName');

If exactly one class implements the F3\SomePackage\SomeInterfaceName interface,
$otherObjectInstance will contain an instance of that class. If zero or more than one
class implements the interface, the Object Factory will throw an exception.

The advantage of using object types instead of regular object names is the increased
flexibility: By referring to interfaces rather than classes it is possible to write code

12

depending on other classes without the need to be specific about the implementation. Which
implementation will actually be used can be set at a later point in time by simple means of
configuration.

4.3. Object dependencies
The intention to base an application on a combination of packages and objects is to force a
clean separation of domains which are realized by dedicated objects. The less each object
knows about the internals of another object, the easier it is to modify or replace one of them,
which in turn makes the whole system flexible. In a perfect world, each of the objects could
be reused in a variety of contexts, for example independently from certain packages and
maybe even outside the FLOW3 framework.

4.3.1. Dependency Injection

An important prerequisite for reusable code is already met by encouraging encapsulation
through object orientation. However, the objects are still aware of their environment as they
need to actively collaborate with other objects and the framework itself: An authentication
object will need a logger for logging intrusion attempts and the code of a shop system
hopefully consists of more than just one class. Whenever an object refers to another directly,
it adds more complexity and removes flexibility by opening new interdependencies. It is very
difficult or even impossible to reuse such hardwired classes and it becomes a nightmare
testing them.

By introducing Dependency Injection, these interdependencies are minimized by inverting
the control over resolving the dependencies: Instead of asking for the instance of an
object actively, the depending object just gets one injected by the Object Manager. This
methodology is also referred to as the "Hollywood Principle [http://en.wikipedia.org/wiki/
Hollywood_Principle]": “Don't call us, we'll call you.”. It helps in the development of code with
loose coupling and high cohesion – or in short: It makes you a better programmer.

In the context of the previous example it means that the authentication object announces
that it needs a logger which implements a certain PHP interface (e.g. the F3\FLOW3\Log
\Logger\BackendInterface). The object itself has no control over what kind of logger
backend (file-logger, sms-logger, ...) it finally gets and it doesn't have to care about it anyway
as long as it matches the expected API. As soon as the authentication object is instantiated,
the object manager will resolve these dependencies, prepare an instance of a logger backend
and inject it to the authentication object.

Tip

An article [http://www.ddj.com/dept/java/184405016] by Jonathan Amsterdam
discusses the difference between creating an object and requesting one (i.e.
using new versus using dependency injection). It demonstrates why new should
be considered as a low-level tool and outlines issues with polymorphism. He
doesn't mention dependency injection though ...

Dependencies on other objects can be declared in the object's configuration (see section
about configuring objects) or they can be solved automatically (so called autowiring).
Generally there are two modes of dependency injection supported by FLOW3: Constructor
Injection and Setter Injection.

4.3.1.1. Constructor Injection

With constructor injection, the dependencies are passed as constructor arguments to the
depending object while it is instantiated. Here is an example of an object Foo which depends
on an object Bar:

http://en.wikipedia.org/wiki/Hollywood_Principle
http://en.wikipedia.org/wiki/Hollywood_Principle
http://en.wikipedia.org/wiki/Hollywood_Principle
http://www.ddj.com/dept/java/184405016
http://www.ddj.com/dept/java/184405016

13

Example 1.6. A simple example for Constructor Injection
namespace F3\MyPackage;

class Foo {

 protected $bar;

 public function __construct(\F3\MyPackage\BarInterface $bar) {
 $this->bar = $bar;
 }

 public function doSomething() {
 $this->bar->doSomethingElse();
 }
}

So far there's nothing special about this class, it just makes sure that an instance of a class
implementing the \F3\MyPackage\BarInterface is passed to the constructor. However,
this is already a quite flexible approach because the type of $bar can be determined from
outside by just passing one or the another implementation to the constructor.

Now the FLOW3 Object Manager does some magic: By a mechanism called Autowiring
all dependencies which were declared in a constructor will be injected automagically if the
constructor argument provides a type definition (i.e. \F3\MyPackage\BarInterface in
the above example). Autowiring is activated by default (but can be switched off), therefore
all you have to do is to write your constructor method.

The object framework can also be configured manually to inject a certain object or object
type. You'll have to do that either if you want to switch off autowiring or want to specify a
configuration which differs from would be done automatically.

Example 1.7. Objects.yaml file for Constructor Injection
F3\MyPackage\Foo:
 arguments:
 1: { object: F3\MyPackage\Bar }

The three lines above define that an object instance of \F3\MyPackage\Bar must
be passed to the first argument of the constructor when an instance of the object
F3\MyPackage\Foo is created.

4.3.1.2. Setter Injection

With setter injection, the dependencies are passed by calling setter methods of the depending
object right after it has been instantiated. Here is an example of the Foo class which depends
on a Bar object - this time with setter injection:

Example 1.8. A simple example for Setter Injection
namespace F3\MyPackage;

class Foo {

 protected $bar;

 public function setBar(\F3\MyPackage\BarInterface $bar) {
 $this->bar = $bar;
 }

 public function doSomething() {
 $this->bar->doSomethingElse();
 }
}

Analog to the constructor injection example, a BarInterface compatible object is injected
into the authentication object. In this case, however, the injection only takes place after
the class has been instantiated and a possible constructor method has been called. The
necessary configuration for the above example looks like this:

Example 1.9. Objects.yaml file for Setter Injection
F3\MyPackage\Foo:
 properties:
 bar: { object: F3\MyPackage\BarInterface }

14

Unlike constructor injection, setter injection like in the above example does not offer the
autowiring feature. All dependencies have to be declared explicitly in the object configuration.
To save you from writing large configuration files, FLOW3 supports a second type of setter
methods: By convention all methods whose name start with "inject" are considered as setters
for setter injection. For those methods no further configuration is necessary, dependencies
will be autowired (if autowiring is not disabled):

Example 1.10. The preferred way of Setter Injection, using an inject
method

namespace F3\MyPackage;

class Foo {

 protected $bar;

 public function injectBar(\F3\MyPackage\BarInterface $bar) {
 $this->bar = $bar;
 }

 public function doSomething() {
 $this->bar->doSomethingElse();
 }
}

Note the new method name injectBar - for the above example no further configuration
is required (but possible). Using inject* methods is the preferred way for setter injection
in FLOW3.

Note

If both, a set* and a inject* method exist for the same property, the inject*
method has precedence.

Constructor- or Setter Injection?

The natural question which arises at this point is “Should I use constructor- or setter
injection?”. There is no answer across-the-board – it mainly depends on the situation
and your preferences. The authors of the Java-based Spring Framework [http://
www.springframework.org] for example prefer Setter Injection for its flexibility. The
more puristic developers of PicoContainer [www.picocontainer.org] strongly plead for
using Constructor Injection for its cleaner approach. Reasons speaking in favor of
constructor injections are:

• Constructor Injection makes a stronger dependency contract

• It enforces a determinate state of the depending object: using setter Injection, the
injected object is only available after the constructor has been called

However, there might be situations in which constructor injection is not possible or even
cumbersome:

• If an object has many dependencies and maybe even many optional dependencies,
setter injection is a better solution.

• Subclasses are not always in control over the arguments passed to the constructor
or might even be incapable of overriding the original constructor (FLOW3's action
controller is such a case). Then setter injection is your only chance to get
dependencies injected.

• Setter injection can be helpful to avoid circular dependencies between objects.

• Setters provide more flexibility to unit tests than a fixed set of constructor arguments

http://www.springframework.org
http://www.springframework.org
http://www.springframework.org
www.picocontainer.org
www.picocontainer.org

15

4.3.1.3. Settings Injection

No, this headline is not misspelled. FLOW3 offers some convenient feature which allows
for automagically injecting the settings of the current package without the need to configure
the injection. If a class contains a method called injectSettings and autowiring is not
disabled for that object, the Object Builder will retrieve the settings of the package the object
belongs to and pass it to the injectSettings method.

Example 1.11. Example for the magic injectSettings method

namespace F3\MyPackage;

class Foo {

 protected $settings = array();

 public function injectSettings(array $settings) {
 $this->settings = $settings;
 }

 public function doSomething() {
 var_dump($this->settings);
 }
}

The doSomething method will output the settings of the MyPackage package.

4.3.2. Required and Optional Dependencies
All dependencies defined in a constructor are, by its nature, required. If a dependency can't
be solved by autowiring or by configuration, FLOW3's object builder will throw an exception.

Also autowired setter-injected dependencies are, by default, required. There is a way
to declare a setter-injected dependency as optional without the need to configure the
dependency in a Objects configuration file. If an optional dependency can't be solved, it
just won't be injected and it is the developer's responsibility to test for the availability of the
desired object. FLOW3 uses the @optional annotation for this purpose:

Example 1.12. Marking a setter-injected dependency as optional

namespace F3\MyPackage;

/**
 * A very fooish class
 */
class Foo {

 /**
 * @var \F3\MyPackage\BarInterface
 */
 protected $bar;

 /**
 * Injects a bar-ish object
 *
 * @param \F3\MyPackage\BarInterface $bar a kind of Bar object
 * @return void
 * @optional
 */
 public function injectBar(\F3\MyPackage\BarInterface $bar) {
 $this->bar = $bar;
 }

 /**
 * A method which does something
 *
 * @return void
 */
 public function doSomething() {
 $this->bar->doSomethingElse();
 }
}

Due to the @optional annotation, the injection of a Bar object is now no longer required.
If the object builder can't autowire an object for this injection method, it will now no longer
throw an exception.

16

4.3.3. Dependency Resolution
The dependencies between objects are only resolved during the instantiation process.
Whenever a new instance of an object class needs to be created, the object configuration is
checked for possible dependencies. If there is any, the required objects are built and only if all
dependencies could be resolved, the object class is finally instantiated and the dependency
injection takes place.

During the resolution of dependencies it might happen that circular dependencies occur. If
an object A requires an object B to be injected to its constructor and then again object B
requires a object A likewise passed as a constructor argument, none of the two classes can
be instantiated due to the mutual dependency. Although it is technically possible (albeit quite
complex) to solve this type of reference, FLOW3's policy is not to allow circular dependencies
at all. As a workaround you can use setter injection instead of Constructor Injection for either
one or both of the objects causing the trouble.

4.4. Configuring objects
The behavior of objects significantly depends on their configuration. During the initialization
process all classes found in the various Classes/ directories are registered as objects and
an initial configuration is prepared. In a second step, other configuration sources are queried
for additional configuration options. Definitions found at these sources are added to the base
configuration in the following order:

1. If they exist, the PackageName/Configuration/Objects.* will be included.

2. Additional configuration defined in the global Configuration/ directory is applied.

Currently there are three important situations in which you want to configure objects:

• Override one object implementation with another

• Set the active implementation for an object type

• Explicitly define and configure dependencies to other objects

4.4.1. Configuration Sources
As already mentioned, the configuration for each object is compiled from different sources.
The Objects.yaml file is the recommended format and is therefore used in most of the
examples. However, the names of the configuration options and their possible values are
identical to all configuration sources.

4.4.1.1. Objects.yaml

If a file named Objects.yaml exists in the Configuration directory of a package, it will
be included during the configuration process. The YAML file should stick to FLOW3's general
rules for YAML-based configuration.

Example 1.13. Sample Objects.yaml file

#
Object Configuration for the MyPackage package
#

@package MyPackage
@version $Id: Objects.yaml 123 2009-01-01 12:00:00Z robert $

F3\MyPackage\Foo:
 arguments:
 1: { object: F3\MyPackage\Baz }
 2: { value: "some string" }
 3: { value: false }
 properties:
 bar: { object: F3\MyPackage\BarInterface }
 enableCache: { setting: MyPackage.Cache.enable }

17

4.4.1.2. Objects.php

As an alternative to YAML, it is possible to write configuration files in plain PHP. However,
the PHP file should stick to FLOW3's general rules for PHP-based configuration.

The following code again adds the same configuration as in the Constructor Injection
example:

Example 1.14. Sample Objects.php file
<?php
declare(ENCODING = 'utf-8');

/* *
 * Object Configuration for the MyPackage package *
 * (this package doesn't really exist, and even if so, the configuration *
 * would probably be different) *
 * */

/**
 * @package MyPackage
 * @version $Id: Objects.php 123 2009-01-01 12:00:00Z robert $
 */

$c['F3\MyPackage\Foo']->arguments->array(
 1 => array('object' => 'F3\MyPackage\Baz'),
 2 => array('value' => 'some string')
);

 // Demonstrates an alternative syntax:
$c['F3\MyPackage\Foo']->arguments->3->value = FALSE;

$c['F3\MyPackage\Foo']->properties->bar->object = 'F3\MyPackage\BarInterface';
$c['F3\MyPackage\Foo']->properties->enableCache->setting = 'MyPackage.Cache.enable';

?>

Caution
Only use these files for configuration, for example don't register autoloader
methods in the Objects.php as this code must be invoked in an earlier stage.

4.4.1.3. Annotations

A very convenient way to configure certain aspects of objects are annotations. You write
down the configuration directly where it takes effect: in the class file. However, this way of
configuring objects is not really flexible, as it is hard coded. That's why only those options can
be set through annotations which are part of the class design and won't change afterwards.
Currently scope is the only supported annotation.

It's up to you defining the scope in the class directly or doing it in a Objects configuration
file – both have the same effect. We recommend using annotations in this case, as the scope
usually is a design decision which is very unlikely to be changed.

Example 1.15. Sample scope annotation
/**
 * This is my great class.
 *
 * @scope prototype
 */
class SomeClass {

}

4.4.2. Overriding Object Implementations
One advantage of componentry is the ability to replace objects by others without
any bad impact on those parts depending on them. A prerequisite for replaceable
objects is that their classes implement a common interface [http://www.php.net/manual/en/
language.oop5.interfaces.php] which defines the public API of the original object. Other
objects which implement the same interface can then act as a true replacement for the original
object without the need to change code anywhere in the system. If this requirement is met,
the only necessary step to replace the original implementation with a substitute is to alter the
object configuration and set the class name to the new implementation.

http://www.php.net/manual/en/language.oop5.interfaces.php
http://www.php.net/manual/en/language.oop5.interfaces.php
http://www.php.net/manual/en/language.oop5.interfaces.php

18

To illustrate this circumstance, consider the following classes:

Example 1.16. A simple Greeter class
namespace F3\MyPackage;

class Greeter {
 public function sayHelloTo($name) {
 echo('Hello ' . $name);
 }
}

During initialization the above class will automatically be registered as the object
F3\MyPackage\Greeter and is available to other objects. In the class code of another
object you might find these lines:

Example 1.17. Code using the object F3_MyPackage_Greeter
 // Use setter injection for fetching an instance of the \F3\MyPackage\Greeter object:
public function injectGreeter(\F3\MyPackage\Greeter $greeter) {
 $this->greeter = $greeter;
}

public function someAction() {
 $greeter->sayHelloTo('Heike');
}

Great, that looks all fine and dandy but what if we want to use the much better object
\F3\OtherPackage\GreeterWithCompliments? Well, you just configure the object
\F3\MyPackage\Greeter to use a different class:

Example 1.18. Objects.yaml file for object replacement
 # Change the name of the class which represents the object "F3\MyPackage\Greeter":
F3\MyPackage\Greeter: className: F3\OtherPackage\GreeterWithCompliments

Now all objects who ask for a traditional greeter will get the more polite version.
However, there comes a sour note with the above example: We can't be sure that the
GreeterWithCompliments class really provides the necessary sayHello() method.
The solution is to let both implementations implement the same interface:

Example 1.19. The Greeter object type
namespace F3\MyPackage;

interface GreeterInterface {
 public function sayHelloTo($name);
}

class Greeter implements \F3\MyPackage\GreeterInterface {
 public function sayHelloTo($name) {
 echo('Hello ' . $name);
 }
}

namespace F3\OtherPackage;

class GreeterWithCompliments implements \F3\MyPackage\GreeterInterface{
 public function sayHelloTo($name) {
 echo('Hello ' . $name . '! You look so great!');
 }
}

Instead of referring to the original implementation directly we can now refer to the interface.
In this case we call the object name a object type because it contains the name of a PHP
interface.

Example 1.20. Code using the object type F3\MyPackage
\GreeterInterface
 // Use setter injection for fetching an instance of the \F3\MyPackage\Greeter object:
public function injectGreeter(\F3\MyPackage\GreeterInterface $greeter) {
 $this->greeter = $greeter;
}

public function someAction() {
 $greeter->sayHelloTo('Heike');
}

19

Finally we have to set which implementation of the F3\MyPackage\GreeterInterface
should be active:

Example 1.21. Objects.yaml file for object type definition
F3\MyPackage\GreeterInterface: className: F3\OtherPackage\GreeterWithCompliments

4.4.3. Configuring Injection
The object framework allows for injection of straight values, objects (i.e. dependencies)
or settings either by passing them as constructor arguments during instantiation of the
object class or by calling a setter method which sets the wished property accordingly.
The necessary configuration for injecting objects is usually generated automatically by the
autowiring capabilities of the Object Builder. Injection of straight values or settings, however,
requires some explicit configuration.

4.4.3.1. Injection Values

Regardless of what injection type is used (constructor or setter injection), there are three
kinds of value which can be injected:

• value: static value of a simple type. Can be string, integer, boolean or array and is passed
on as is.

• object: name of an objects (or object type) which represents a dependency. Dependencies
of the injected object are resolved and an instance of the object is passed along.

• setting: setting defined in one of the Settings.* files. A path separated by dots "."
specifies which setting to inject.

4.4.3.2. Constructor Injection

Arguments for constructor injection are defined through the arguments option. Each
argument is identified by its position, counting starts with 1.

Example 1.22. Sample class for Constructor Injection
namespace F3\MyPackage;

class Foo {

 protected $bar;
 protected $identifier;
 protected $enableCache;

 public function __construct(\F3\MyPackage\BarInterface $bar, $identifier, $enableCache) {
 $this->bar = $bar;
 $this->identifier = $identifier;
 $this->enableCache = $enableCache;
 }

 public function doSomething() {
 $this->bar->doSomethingElse();
 }
}

Example 1.23. Sample configuration for Constructor Injection
F3\MyPackage\Foo:
 arguments:
 1: { object: F3\MyPackage\Bar }
 2: { value: "some string" }
 3: { setting: "MyPackage.Cache.enable" }

Note
It is usually not necessary to configure injection of objects explicitly. It is
much more convent to just declare the type of the constructor arguments (like
F3\MyPackage\BarInterface in the above example) and let the autowiring
feature configure and resolve the dependencies for you.

20

4.4.3.3. Setter Injection

The following class and the related Objects.yaml file demonstrate the syntax for the
definition of setter injection:

Example 1.24. Sample class for Setter Injection
namespace F3\MyPackage;

class Foo {

 protected $bar;
 protected $identifier = 'Untitled';
 protected $enableCache = FALSE;

 public function injectBar(\F3\MyPackage\BarInterface $bar) {
 $this->bar = $bar;
 }

 public function setIdentifier($identifier) {
 $this->identifier = $identifier;
 }

 public function setEnableCache($enableCache) {
 $this->enableCache = $enableCache;
 }

 public function doSomething() {
 $this->bar->doSomethingElse();
 }
}

Example 1.25. Sample configuration for Setter Injection
F3\MyPackage\Foo:
 properties:
 bar: { object: F3\MyPackage\Bar }
 identifier: { value: "some string" }
 enableCache: { setting: "MyPackage.Cache.enable" }

As you can see, it is important that a setter method with the same name as the property,
preceded by "inject" or "set" exists. It doesn't matter though, if you choose "inject" or
"set", except that "inject" has the advantage of being autowireable. As a rule of thumb
we recommend using "inject" for required dependencies and values and "set" for optional
properties.

4.4.3.4. Injection of Objects Specified in Settings

In some cases it might be convenient to specify the name of the object to be injected in
the settings rather than in the objects configuration. This can be achieved by specifying the
settings path instead of the object name:

Example 1.26. Injecting an object specified in the settings
F3\MyPackage\Foo:
 properties:
 bar: { object: MyPackage.fooStuff.barImplementation }

Example 1.27. Example Settings.yaml of MyPackage
fooStuff:
 barImplementation: F3\MyPackage\Bars\ASpecialBar

4.4.3.5. Nested Object Configuration

While autowiring and automatic dependency injection offers a great deal of convenience, it
is sometimes necessary to have a fine grained control over which objects are injected with
which third objects injected.

Consider a FLOW3 cache object, a VariableCache for example: the cache itself depends
on a cache backend which on its part requires a few settings passed to its constructor - this
readily prepared cache should now be injected into another object. Sounds complex? With
the objects configuration it is however possible to configure even that nested object structure:

21

Example 1.28. Nesting object configuration
F3\MyPackage\Controller\DefaultController:
 properties:
 cache:
 object:
 name: F3\FLOW3\Cache\VariableCache
 arguments:
 1: value: MyCache
 2:
 object:
 name: F3\FLOW3\Cache\Backend\File
 properties:
 cacheDirectory: value: /tmp/

4.4.3.6. Disabling Autowiring

Injecting dependencies is a common task. Because FLOW3 can detect the type of
dependencies a constructor needs, it automatically configures the object to ensure that the
necessary objects are injected. This automation is called autowiring and is enabled by default
for every object. As long as autowiring is in effect, the Object Builder will try to autowire all
constructor arguments and all methods named after the pattern inject*.

If, for some reason, autowiring is not wanted, it can be disabled by setting an option in the
object configuration:

Example 1.29. Turning off autowiring support in Objects.yaml
F3\MyPackage\MyObject:
 autoWiringMode: off;

4.4.4. Custom Factories
Complex objects might require a custom factory which takes care of all important settings
and dependencies. As we have seen previously, a cache consists of a frontend, a backend
and configuration options for that backend. Instead of creating and configuring these objects
on your own, you can use the F3\FLOW3\Cache\Factory which provides a convenient
create method taking care of all the rest.

$myCache = $cacheFactory->create('MyCache', 'F3\FLOW3\Cache\VariableCache', 'F3\FLOW3\Cache\Backend\File', array('cacheDirectory' => '/tmp'));

It is possible to specify for each object if it should be created by a custom factory rather than
the Object Builder. Consider the following configuration:

Example 1.30. Sample configuration for a Custom Factory
F3\FLOW3\Cache\CacheInterface:
 factoryClassName: F3\FLOW3\Cache\Factory
 factoryMethodName: create

From now on the Cache Factory's create method will be called each time an object of type
CacheInterface needs to be instantiated. If arguments were passed to the getObject
or create method, they will be passed through to the custom factory method:

Example 1.31. YAML configuration for a Custom Factory with default
arguments
F3\FLOW3\Cache\CacheInterface:
 factoryClassName: F3\FLOW3\Cache\Factory
 arguments:
 2: value: F3\FLOW3\Cache\VariableCache
 3: value: F3\FLOW3\Cache\Backend\File
 4: value: { cacheDirectory: /tmp }

Example 1.32. PHP code using the custom factory
$myCache = $objectFactory->create('MyCache');

$objectFactory is a reference to the F3\FLOW3\Object\Factory. The argument with
the value MyCache is passed to the Cache Factory as the first parameter. The required
second and third argument and the optional fourth parameter are automatically built from the
values defined in the object configuration.

22

4.4.5. Name of Lifecycle Methods
The default name of a lifecycle methods is initializeObject and shutdownObject.
If these methods exist, the initialization method will be called after the object has been
instantiated and all dependencies are injected and the shutdown method is called before the
Object Manager quits its service. The name of both methods is configurable per object for
situations you don't have control over the name of your initialization method (maybe, because
you are integrating legacy code):

Example 1.33. Objects.yaml configuration of the initialization and
shutdown method
F3\MyPackage\MyObject:
 lifecycleInitializationMethod: myInitializeMethodname
 lifecycleShutdownMethod: myShutdownMethodname

5. Configuration Framework
Configuration is an important aspect of versatile applications. FLOW3 provides you with
configuration mechanisms which have a small footprint and are convenient to use and
powerful at the same time. Hub for all configuration is the configuration manager which
handles alls configuration tasks like reading configuration, configuration cascading, and
(later) also writing configuration.

5.1. Configuration Files
FLOW3 distinguishes between different types of configuration. The most important type of
configuration are the settings, however other configuration types exist for special purposes.

The preferred configuration format is YAML and the configuration options of each type are
defined in their own dedicated file:

Settings.yaml Contains user-level settings, i.e. configuration options the users or
administrators are meant to change. Settings are the highest level of
system configuration.

FLOW3.yaml Contains settings for the FLOW3 package.

Routes.yaml Contains routes configuration. This routing information is parsed and
used by the MVC Web Routing mechanism. Refer to the MVC section
for more information.

Objects.yaml Contains object configuration, i.e. options which configure objects and
the combination of those on a lower level. See the Object Manager
section for more information.

Packages.yaml Contains package configuration, i.e. options which define certain
specialties of the package such as custom autoloaders or special
resources.

Caches.yaml Contains a list of caches which are registered automatically. Caches
defined in this configuration file are registered in an early stage of the
boot process and profit from mechanisms such as automatic flushing by
the File Monitor.

5.1.1. File Locations
There are several locations where configuration files may be placed. All of them are scanned
by the configuration manager during initialization and cascaded into a single configuration
tree. The following locations exist (listed in the order they are loaded):

/Packages/PackageName/
Configuration/

The Configuration directory of each package is
scanned first. Only at this stage new configuration options

23

can be introduced (by just defining a default value).
After all configuration files form these directories have
been parsed, the resulting configuration containers are
protected against further introduction of new options.

Note that FLOW3.yaml files are only allowed in the
FLOW3 package and are ignored in any other package
configuration directory.

/Configuration/ Configuration in the global Configuration directory
override the default settings which were defined in the
package's configuration directories. To safe users from
typos, options which are introduced on this level will result
in an error message.

/
Configuration/
ApplicationContext/

There may exist a subdirectory for each application
context (see FLOW3 Bootstrap section). This
configuration is only loaded if FLOW3 runs in the
respective application context. Like in the global
Configuration directory, no new configuration options
can be introduced at this point - only their values can be
changed.

5.2. Defining Configuration

5.2.1. Configuration Formats
Although YAML is the preferred and default configuration format, it is possible to use
other kinds of markup. Currently FLOW3 has built-in support for YAML and PHP based
configuration.

5.2.2. YAML
YAML is a well-readable format which is especially well-suited for defining configuration. The
full specification among with many examples can be found on the YAML website [???]. All
important parts of the YAML specification are supported by the parser used by FLOW3, it
might happen though that some exotic features won't have the desired effect. At best you look
at the configuration files which come with the FLOW3 distribution for getting more examples.

Example 1.34. Example for a package-level Settings.yaml
#
Settings Configuration for the TYPO3CR Package
#

$Id: Settings.yaml 1234 2009-01-01 12:00:00Z foobar $

TYPO3CR:

 # The storage backend configuration
 storage:
 backend: 'F3\TYPO3CR\Storage\Backend\PDO'
 backendOptions:
 dataSourceName: 'sqlite:%FLOW3_PATH_DATA%Persistent/TYPO3CR.db'
 username:
 password:

 # The indexing/search backend configuration
 search:
 backend: 'F3\TYPO3CR\Storage\Search\Lucene'
 backendOptions:
 indexLocation: '%FLOW3_PATH_DATA%Persistent/Index/'

5.2.3. PHP
Although configuration files are plain PHP, they should follow FLOW3's conventions for
configuration files. All options are properties of a special configuration container object which
is automagically provided in a variable named $c.

???
???

24

Example 1.35. Example for a package-level Settings.php
<?php
declare(ENCODING="utf-8");

/* *
 * Settings Configuration for the TYPO3CR Package *
 * */

/**
 * @package TYPO3CR
 * @version $Id: Objects.php 1234 2009-01-10 12:00:00Z johndoe $
 */

/**
 * The storage backend to use for TYPO3CR.
 *
 * @var F3_TYPO3CR_Storage_BackendInterface
 */
$c->TYPO3CR->storage->backend = 'F3\TYPO3CR\Storage\Backend\PDO';

/**
 * Options which are passed to the storage backend used by TYPO3CR
 *
 * @var array
 */
$c->TYPO3CR->storage->backendOptions = array(
 'dataSourceName' => 'sqlite:/tmp/TYPO3CR.db',
 'username' => NULL,
 'password' => NULL
);

?>

As you can see, you can introduce new configuration options by just assigning a value to
them using PHP's object / member variable syntax.

Technically the $c variable is an instance of \F3\FLOW3\Configuration\Container
which automatically creates sub containers as soon as you try to access a not-yet-existing
property. Taking the above example, $c, $c->TYPO3CR and $c->TYPO3CR->storage are
all Configuration Container objects which were created on the fly. backend is just a property
(member variable) of $c->TYPO3CR->storage and contains a value of the type string.

Note
Please note that the first level of your option tree must always contain the key
of the package you're referring to (TYPO3CR in the above example). While it
technically is possible to define and modify settings of other package in your own
package, it's certainly something you should do only if really necessary.

There are two alternatives to the above object-driven syntax and all the three of them may
be mixed as you like.

Instead of the object / property way, you can equally use an array syntax:

Example 1.36. Settings declaration using the object and the array syntax
/**
 * The storage backend to use for TYPO3CR.
 *
 * @var \F3\TYPO3CR\Storage\BackendInterface
 */
$c->TYPO3CR->storage['backend'] = 'F3\TYPO3CR\Storage\Backend\PDO';

Finally you may even call virtual setter methods in order to get a more readable configuration
file when setting many options on the same container:

Example 1.37. Settings declaration with the object syntax and virtual
setters
 // Traditional object / property syntax:

$c->Demo->administrator->name = 'John Doe';
$c->Demo->administrator->email = 'johndoe@typo3.org';
$c->Demo->administrator->country = 'DE';

 // The same with the virtual setters syntax:

$c->Demo->administrator->
 setName('JohnDoe')->
 setEmail('johndoe@typo3.org')->
 setCountry('DE');

25

5.2.4. Constants (special case)
In the Packages configuration you can use two special options influencing the class
autoloader of FLOW3's resource manager.

Caution
This might be a temporary solution which will surely change as soon as the
resource manager and the package manager become more mature.

$c->PackageKey-
>resourceManager-
>specialClassNameAndPaths

This can be used to register classes outside the
include_path and not covered by the FLOW3 class
autoloader.

$c->PackageKey-
>resourceManager-
>includePaths

This can be used to add paths to the PHP include_path.

The values for those options may contain markers which are replaced before the value is
used:

%PATH_PACKAGE% Will be replaced by the path to the package folder.

%PATH_PACKAGE_CLASSES
%

Will be replaced by the path to the package's Classes
folder.

%PATH_PACKAGE_RESOURCES
%

Will be replaced by the path to the package's Resources
folder.

Example 1.38. Example for using specialClassNameAndPaths
#
Package configuration of the Smarty package
#

@package Smarty

Smarty:
 resourceManager:
 specialClassNameAndPaths:
 Smarty: %PATH_PACKAGE_RESOURCES%PHP/Smarty/Smarty.class.php

Example 1.39. Example for using specialClassNameAndPaths
<?php
declare(ENCODING="utf-8");

/* *
 * Packages configuration of the Smarty package *
 * */

/**
 * @package Smarty
 * @version $Id:PackageConfiguration.php 178 2007-03-09 10:30:04Z robert $
 */

$c->Smarty->resourceManager->specialClassNameAndPaths->Smarty = '%PATH_PACKAGE_RESOURCES%PHP/Smarty/Smarty.class.php';

?>

5.3. Accessing Configuration
There are certain situations in which FLOW3 will automatically provide you with the right
configuration - the MVC's Action Controller is such a case. However, in most other cases you
will have to retrieve the configuration yourself. The Configuration Manager comes up with a
very simple API providing you access to the already parsed and cascaded configuration.

5.3.1. Working with Settings
What you usually want to work with are settings. The following example demonstrates how
to let FLOW3 inject the settings of a classes' package and output some option value:

26

Example 1.40. Settings Injection
namespace F3\Demo;

class SomeClass {

 /**
 * @var array
 */
 protected $settings;

 /**
 * Inject the settings
 *
 * @param array $settings
 * @return void
 */
 public function injectSettings(array $settings) {
 $this->configurationManager = $configurationManager;
 }

 /**
 * Outputs some settings of the "Demo" package.
 *
 * @return void
 */
 public function theMethod() {
 echo ($this->settings->administrator->name);
 echo ($this->settings->administrator->email);
 }
}

5.3.2. Manually Retrieving Settings
There might be situations in which you don't want to get the settings injected. The
Configuration Manager provides an API for these cases as you can see in the next example.

Example 1.41. Retrieving settings
namespace F3\Demo;

class SomeClass {

 /**
 * @var \F3\FLOW3\Configuration\Manager
 */
 protected $configurationManager;

 /**
 * Inject the Configuration Manager
 *
 * @param \F3\FLOW3\Configuration\Manager $configurationManager
 * @return void
 */
 public function injectConfigurationManager(\F3\FLOW3\Configuration\Manager $configurationManager) {
 $this->configurationManager = $configurationManager;
 }

 /**
 * Output some settings of the Demo package
 *
 * @return void
 */
 public function theMethod() {
 $mySettings = $this->configurationManager->getSettings('Demo');
 echo ($mySettings->administrator->name);
 echo ($mySettings->administrator->email);
 }
}

5.3.3. Working with other configuration
Although infrequently necessary, it is also possible to retrieve options of the more
special configuration types. The configuration manager provides a method called
getSpecialConfiguration() for this purpose. The result this method returns depends
on the actual configuration type you are requesting.

Bottom line is that you should be highly aware of what you're doing when working with these
special options. Usually there are much better ways to get the desired information (e.g. ask
the Object Manager for object configuration).

6. Resource Manager

27

7. MVC Framework

7.1. Introduction

7.1.1. Model-View-Controller
In the design of FLOW3's architecture we have taken great care to separate concerns and
assign each part of the framework with well-defined tasks. The separation of concerns is an
important principle of good software design and its most prominent representative probably is
the Model-View-Controller pattern. MVC separates the business logic from the presentation
by splitting up user interaction into three roles:

• The model is an object which contains data and business logic of a certain domain. It
doesn't contain any information about the presentation of that data, but rather defines the
behaviour. In the FLOW3 project we prefer a special kind of model, the Domain Model
[http://martinfowler.com/eaaCatalog/domainModel.html].

• The view represents the display of the model on the web or another output channel. Views
only display data, they don't build or modify it.

• The controller reacts on user input, selects and manipulates the model as accordingly,
selects a view and passes it the prepared model for rendering.

This diagram outlines the collaboration between model, view and controller:

Figure 1.1. Model-View-Controller Pattern

7.1.2. Other Patterns Used
Design Patterns (and MVC is one of them) are not only great for solving reoccuring design
problems in a structured manner - they also help you communicating software designs. The
following patterns play an important role in FLOW3's MVC mechanism and might give you
a better idea of the overall design:

• Incoming requests are handled by a Request Handler which takes the role of a Front
Controller [???].

• Template View [???] is the most commonly used pattern for views, but Transform Views
[???] and Two-Step Views [???] are equally supported.

• The preferred type of model is the Domain Model [???].

http://martinfowler.com/eaaCatalog/domainModel.html
http://martinfowler.com/eaaCatalog/domainModel.html
???
???
???
???
???
???
???
???
???
???
???

28

7.1.3. Hello World!
Let's start with an example before we go into greater detail of request handling and the
internals of the MVC framework. The minimal approach is to create an Action Controller
which just returns “Hello World!”. To begin with, we need to create some directories which
contain the code of our FLOW3 package and eventually the controller class:

Packages/
 Demo/
 Classes/
 Controller/
 F3_Demo_Controller_DefaultController.php

The DefaultController class looks as simple as this (leaving out the very recommended
comments):

Example 1.42. Hello World! controller
namespace F3\Demo\Controller;

class DefaultController extends \F3\FLOW3\MVC\Controller\ActionController {
 public function indexAction() {
 return "Hello World!";
 }
}

Provided that the web root directory of your local server points to FLOW3's public/
directory, you will get the following output when calling the URI http://localhost/demo/
:

Hello World!

Great, that was easy - but didn't we say that it's the view's responsibility to take care of the
presentation? Let's create a simple PHP-based view for that purpose:

Packages/
 Demo/
 Classes/
 Controller/
 F3_Demo_Controller_DefaultController.php
 View/
 F3_Demo_View_DefaultIndex.php

The view's code is equally trivial:

Example 1.43. Hello World! view
namespace F3\Demo\View;

class DefaultIndex extends \F3\FLOW3\MVC\View\AbstractView {
 public function render() {
 return "Hello World!";
 }
}

Finally our action controller needs a little tweak to return the rendered view instead of shouting
“Hello World!” itself:

Example 1.44. Improved Hello World! controller
namespace F3\Demo\Controller;

class DefaultController extends \F3\FLOW3\MVC\Controller\ActionController {
 public function indexAction() {
 return $this->view->render();
 }
}

29

7.1.4. Recommended File Structure
As you have seen in the hello world example, conventions for the directory layout simplify
your development a lot. There's no need to register controllers, actions or views if you follow
our recommended file structure. These are the rules:

• Controllers are located in their own directory Controller just below the Classes
directory of your package. They can have arbitrary names while the DefaultController
has a special meaning: If the package was specified in the request but no controller, the
DefaultController will be used.

• View classes are situated below a View directory. The classname of the view is a
combination of the name of the controller and the name of the action.

This sample directory layout demonstrates the above rules:

Example 1.45. Sample file structure

Packages/
 Demo/
 Classes/
 Controller/
 F3_Demo_Controller_DefaultController.php
 F3_Demo_Controller_CustomerController.php
 F3_Demo_Controller_OrderController.php
 View/
 F3_Demo_View_DefaultIndex.php
 F3_Demo_View_CustomerIndex.php
 F3_Demo_View_CustomerList.php
 F3_Demo_View_CustomerDetails.php
 F3_Demo_View_OrderList.php

Adhering to these conventions has the advantage that the classname of the view for example
is resolved automatically. However it is possible (and not really difficult) to deviate from this
layout and have a completely different structure.

7.1.5. From the URI to the view

Caution
For the example URIs we assume that the web root directory of your local server
points to FLOW3's public/ directory. If that's not the case you have to extend
the URI accordingly.

FLOW3 provides a standard way of resolving the URI to your MVC-Objects.

Say, you want to see the list of customers (based on the file-structure-example above). The
URI to get the list would be: http://localhost/demo/customer/list.html or just
http://localhost/demo/customer/list.

This URI will be resolved into the package-name (Demo), controller-name (Customer),
action-name(list) and format-name (html - which is the default format).

Depending on that, the controller \F3\Demo\Controller\CustomerController
(Pattern: 'F3\@package\Controller\@controllerController') and its method
listAction() will be used. The corresponding view is \F3\Demo\View\CustomerList
(Pattern: 'F3\@package\View\@controller@action@format').

If you have a look at the view pattern, you see, that you can easily add a view that creates
an xml-output by creating the class \F3\Demo\View\CustomerListXML. You will get the
xml-output by calling the URI http://localhost/demo/customer/list.xml.

30

7.2. Request and Response
No matter if a FLOW3 application runs in a web context or is launched from the command
line, the basic workflow is always the same: The user request is analyzed and forwarded to an
appropriate controller which decides on which actions to take and finally returns a response
which is handed over to the user. This section highlights the flow and the collaborators in
the request-response machinery.

7.2.1. Request Processing Overview
A sequence diagram is worth a thousand words said my grandma, so let's take a look at the
standard request-response workflow in FLOW3:

Figure 1.2. Example of a Web Request-Response Workflow

As you see, there are a lot of parts of the framework involved for answering a request - and
the diagram doesn't even consider caching or forwarding of requests. But we didn't create
this structure just for the fun of it - each object plays an important role as you'll see in the
next sections.

7.2.2. Request Handler
The request handler takes the important task to handle and respond to a request. There
exists exactly one request handler for each request type. By default web and command line
requests are supported, but more specialized request handlers can be developed, too.

Before one of the request handlers comes to play, the framework needs to determine which
of them is the most suitable for the current request. The request handler resolver asks all
of the registered request handlers to rate on a scale how well they can handle the current
raw request. The resolver then chooses the request handler with the most points and passes
over the control.

Custom request handlers for special purposes just need to implement the \F3\FLOW3\MVC
\RequestHandlerInterface. All classes implementing that interface are automatically
registered and will be considered while resolving a suitable request handler.

7.2.3. Request Builder
When a request handler receives a raw request, it needs to build a request object which can
be passed to the dispatcher and later to the controller. The request building delegated to a
request builder which can build the required request type (ie. web, CLI etc.).

31

The building process mainly consists of

1. create a new request object

2. set some request-type specific parameters (like the request URI for a web request)

3. determine and set the responsible controller, action and action arguments

Especially the last step is important and requires some more or less complex routing in case
of web requests.

7.2.4. Request Processors
Requests which were built by the request builder usually fit the most common needs. For
special demands it is possible to postprocess the request object before it is sent to the
dispatcher. Request processors can be registered through the Request Processor Chain
Manager and are - as the name suggests - invoked in a chain.

7.2.5. Request Dispatcher
The final task of the MVC framework consists in dispatching the request to the controller
specified in the request object. The request dispatcher will try to call the action specified in
the request object and if none was specified fall back on a default action.

Note
There are more features planned for the dispatcher, but at the time of this writing
they have not yet been implemented.

7.2.6. Request Types
FLOW3 supports the most important request types out of the box. Additional request
types can easily be implemented by extending the \F3\FLOW3\MVC\Request class and
registering a request handling which can handle the new request type (and takes care of
building the request object). Here are the request types which come with the default FLOW3
distribution:

7.2.6.1. Web Request / Response

Web requests are the most common request types. Currently only the basic features are
implemented, but further options - especially for the web response - are in the pipeline.

7.2.6.2. CLI Request / Response

Requests from the command line are recognized by the used SAPI (Server Application
Programming Interface). This request type is basically the same as the generic request type
and mainly exists as a marker.

7.2.6.3. AJAX Request / Response

Note
This request type has not yet been implemented

7.3. Controller

7.3.1. Action Controller

7.3.1.1. Initialization Methods

initializeController

32

initializeAction

initializeView

7.3.1.2. Configuration

7.3.1.3. Supported Request Types

7.3.1.4. Arguments

7.3.1.5. Action Methods

$this->indexActionMethodName

7.3.1.6. Action View

- $this->initializeView = TRUE | FALSE

7.3.2. Other Controllers

7.3.2.1. Abstract Controller

7.3.2.2. Request Handling Controller

7.3.2.3. Default Controller

7.4. View

7.4.1. Template View

7.4.2. Special Views

7.4.2.1. Default View

7.4.2.2. Empty View

7.5. Helpers

7.6. Model

7.7. Routing

7.8. CLI request handling
FLOW3's CLI request handling offers a comfortable and flexible way of calling code from the
command line:

php index.php [command] [options] [--] [arguments]

33

command, options and arguments are optional, with varying results. The command
structure follows what is commonly accpeted on unixoid systems for CLI programs:

command If not given, the default controller of the FLOW3 package is used and it's index
action is called. While this is an allowed call, it hardly makes sense (other than
checking if FLOW basically works). If command is given then it is defined as
package [[sub1..N] controller action]

First part is always the package. If only the package is given, it's default
controller's index action is called.

If at least three command parts are given, the last two sepcify controller and
action. Anything in between specifys a sub package structure.

Example 1.46. Some FLOW3 CLI command specifications

testing cli run would call the "run" action of the "cli" controller in the
"Testing" package

typo3cr admin setup default would call the "setup" controller's "default"
action in the subpackage "admin" of the package "TYPO3CR"

options Options are either short- or long-style. The first option detected ends collecting
command parts. Here are some examples:

Example 1.47. Giving options to FLOW3 CLI requests

-o -f=value --a-long-option --with-spaces="is possible"
--input file1 -o=file2 --event-this = works

arguments Arguments can follow and will be available to the called controller in the
request object. To distinguish between command and arguments in cases
where no options are given the seperator -- must be used.

Example 1.48. Some FLOW3 CLI commands

Calling the TYPO3CR setup:

php index.php typo3cr admin setup setup --dsn=sqlite:/tmp/typo3cr.db
--indexlocation=/tmp/lucene/

Running FLOW3 unit tests:

php index.php testing cli run --package-key=FLOW3 --output-
directory=./

Rendering the FLOW3 documentation to HTML:

php index.php doctools render render -p FLOW3 -o flow3-manual/

8. Cache Framework

9. Error and Exception Handling

10. AOP Framework

10.1. Introduction
Aspect-Oriented Programming (AOP) is a programming paradigm which complements
Object-Oriented Programming (OOP) by separating concerns of a software application to
improve modularization. The separation of concerns (SoC) aims for making a software easier

34

to maintain by grouping features and behavior into manageable parts which all have a specific
purpose and business to take care of.

OOP already allows for modularizing concerns into distinct methods, classes and packages.
However, some concerns are difficult to place as they cross the boundaries of classes and
even packages. One example for such a cross-cutting concern is security: Although the main
purpose of a Forum package is to display and manage posts of a forum, it has to implement
some kind of security to assert that only moderators can approve or delete posts. And many
more packages need a similar functionality for protect the creation, deletion and update of
records. AOP enables you to move the security (or any other) aspect into its own package
and leave the other objects with clear responsibilities, probably not implementing any security
themselves.

Aspect-Oriented Programming has been around in other programming languages for quite
some time now and sophisticated solutions taking advantage of AOP exist. FLOW3's AOP
framework allows you to use of the most popular AOP techniques in your own PHP
application. In contrast to other approaches it doesn't require any special PHP extensions,
additional compile steps or modification of the target code – and it's a breeze to configure.

Tip
In case you are unsure about some terms used in this introduction or later in
this chapter, it's a good idea looking them up (for example at Wikipedia [http://
en.wikipedia.org]). Don't think that you're the only one who has never heard of
a Pointcut or SoC1 – we had a hard time learning these too. However, it's worth
the hassle, as a common vocabulary improves the communication between
developers a lot.

10.1.1. AOP concepts and terminology
Let's stay with the example of a Forum for a while. The classes of the forum don't
implement security themselves, but somehow we have to make sure that whenever a method
deletePost() is called, a security check takes place. The class containing the delete
method is called the target class. We have a new aspect called "security" which we'd like to
weave into that class. Whenever the method deletePost() is called, a method interceptor
defined by an around advice will intercept the target method and only proceed if the operation
is allowed in the current security context.

At the first (and the second, third, ...) glance, the terms used in the AOP context are not really
intuitive. But, similar to most of the other AOP frameworks, we better stick to them, to keep
a common language between developers. Here they are:

Aspect An aspect is the part of the application which cross-cuts
the core concerns of multiple objects. In FLOW3, aspects
are implemented as regular classes which are tagged by the
@aspect annotation. The methods of an aspect class represent
advices, the properties act as an anchor for introductions.

Join point A join point is a point in the flow of a program. Examples are the
execution of a method or the throw of an exception. In FLOW3,
join points are represented by the \F3\FLOW3\AOPJoinPoint
object which contains more information about the circumstances
like name of the called method, the passed arguments or type
of the exception thrown. A join point is an event which occurs
during the program flow, not a definition which defines that point.

Advice An advice is the action taken by an aspect at a particular join
point. Advices are implemented as methods of the aspect class.
These methods are executed before and / or after the join point
is reached.

Pointcut The pointcut defines a set of joinpoints which need to be
matched before running an advice. The pointcut is configured by

http://en.wikipedia.org
http://en.wikipedia.org
http://en.wikipedia.org

35

a pointcut expression which defines when and where an advice
should be executed. FLOW3 uses methods in an aspect class
as anchors for pointcut declarations.

Pointcut expression A poincut expression is the condition under which a joinpoint
should match. It may, for example, define that joinpoints only
match on the execution of a (target-) method with a certain
name. Pointcut expressions are used in pointcut- and advice
declarations.

Target A class or method being adviced by one or more aspects is
referred to as a target class /-method.

Introduction An introduction redeclares the target class to implement an
additional interface. By declaring an introduction it is possible to
introduce new interfaces and an implementation of the required
methods without touching the code of the original class.

The following terms are related to advices:

Before advice A before advice is executed before the target method is
being called, but cannot prevent the target method from
being executed.

After returning advice An after returning advice is executed after returning from the
target method. The result of the target method invocation is
available to the after returning advice, but it can't change it.
If the target method throws an exception, the after returning
advice is not executed.

After throwing advice An after throwing advice is only executed if the target
method throwed an exception. The after throwing advice
may fetch the exception type from the join point object.

After advice An after advice is executed after the target method has been
called, no matter if an exception was thrown or not.

Around advice An around advice is wrapped around the execution of the
target method. It may execute code before and after the
invocation of the target method and may ultimately prevent
the original method from being executed at all. An around
advice is also responsible for calling other around advices
at the same join point and returning either the original or a
modified result for the target method.

Advice chain If more than one around advice exists for a join point, they
are called in an onion-like advice chain: The first around
advice probably executes some before-code, then calls the
second around advice which calls the target method. The
target method returns a result which can be modified by the
second around advice, is returned to the first around advice
which finally returns the result to the initiator of the method
call. Any around advice may decide to proceed or break the
chain and modify results if necessary.

10.1.2. FLOW3 AOP concepts
Aspect-Oriented Programming was, of course, not invented by us2. Since the initial release
of the concept, dozens of implementations for various programming languages evolved.

2AOP was rather invented by Gregor Kiczalesand his team at the Xerox Palo Alto Research Center [http://www.parc.com/]. The
original implementation was called AspectJ [http://eclipse.org/aspectj] and is an extension to Java. It still serves as a de-facto
standard and is now maintained by the Eclipse Foundation.

http://www.parc.com/
http://www.parc.com/
http://eclipse.org/aspectj
http://eclipse.org/aspectj

36

Although a few PHP-based AOP frameworks do exist, they followed concepts which did
not match the goals of FLOW3 (to provide a powerful, yet developer-friendly solution) when
the development of TYPO3 5.0 began. We therefore decided to create a sophisticated but
pragmatic implementation which adopts the concepts of AOP but takes PHP's specialties and
the requirements of typical FLOW3 applications into account. In a few cases this even lead
to new features or simplifications because they were easier to implement in PHP compared
to Java.

FLOW3 pragmatically implements a reduced subset of AOP, which satisfies most needs
of web applications. The join point model allows for intercepting method executions but
provides no special support for advising field access3. For the sake of simplicity and
performance, pointcuts don't allow criteria which have to be evaluated at runtime (such as
matching argument values of a method) and pointcut expressions are based on well-known
regular expressions instead of requiring the knowledge of a dedicated expression language.
Pointcut filters and join point types are modularized and can be extended if more advanced
requirements should arise in the future.

10.1.3. Implementation overview
FLOW3's AOP framework does not require a pre-processor or an aspect-aware PHP
interpreter to weave in advices. It is implemented and based on pure PHP and doesn't need
any specific PHP extension. However, it does require the Object Manager to fulfill its task.

FLOW3 uses PHP's reflection capabilities to analyze declarations of aspects, pointcuts and
advices and implements method interceptors as a dynamic proxy. In accordance to the
GoF patterns4, the proxy classes act as a placeholders for the target object. They are true
subclasses of the original and override adviced methods by implementing a interceptor
method. The proxy classes are generated automatically by the AOP framework and cached
for further use. If a class has been adviced by some aspect, the Object Manager will only
deliver instances of the proxy class instead of the original.

The approach of storing generated proxy classes in files provides the whole advantage of
dynamic weaving with a minimum performance hit. Debugging of proxied classes is still easy
as they truly exist in real files.

10.2. Aspects
Aspects are abstract containers which accommodate pointcut-, introduction- and advice
declarations. In most frameworks, including FLOW3, aspects are defined as plain classes
which are tagged (annotated) as an aspect. The following example shows the definition of
a hypothetical FooSecurity aspect:

Example 1.49. Declaration of an aspect
namespace F3\MySecurityPackage;

/**
 * An aspect implementing security for Foo
 *
 * @package MySecurityPackage
 * @author John Doe <john@typo3.org>
 * @aspect
 */
class FooSecurityAspect {

}

As you can see, \F3\MySecurityPackage\FooSecurityAspect is just a regular PHP
class which may (actually must) contain methods and properties. What it makes it an aspect
is solely the @aspect annotation mentioned in the class comment. The AOP framework
recognizes this tag and registers the class as an aspect.

3Intercepting setting and retrieval of properties can easily be achieved by declaring a before-, after- or around advice.
4GoF means Group of Four and refers to the authors of the classic book Design Patterns – Elements of Reusable Object-Oriented
Software

37

Note
A void aspect class doesn't make any sense and if you try to run the above
example, the AOP framework will throw an exception complaining that no advice,
introduction or pointcut has been defined.

10.3. Pointcuts
If we want to add security to foo, we need a method which carries out the security checks
and a definition where and when this method should be executed. The method is an advice
which we're going to declare in a later section, the “where and when” is defined by a pointcut
expression in a pointcut declaration.

You can either define the pointcut in the advice declaration or set up named pointcuts to help
clarify their use.

A named pointcut is represented by a method of an aspect class. It contains two pieces of
information: The pointcut name, defined by the methodname, and the poincut expression,
declared by an annotation. The following pointcut will match the execution of methods whose
name starts with “delete”, mo matter in which class they are defined:

Example 1.50. Declaration of a named pointcut
 /**
 * A pointcut which matches all methods whose name starts with "delete".
 *

 * @pointcut method(.*->delete.*())
 * @author John Doe <john@typo3.org>
 */

 public function deleteMethods() {}

Declaration of the pointcut expression
Name of the pointcut

10.3.1. Pointcut expressions
As already mentioned, the pointcut expression configures the filters which are used to match
against join points. It is comparable to an if condition in PHP: Only if the whole condition
evaluates to TRUE, the statement is executed - otherwise it will be just ignored. If a pointcut
expression evaluates to TRUE, the pointcut matches and advices which refer to this poincut
become active.

Note
The AOP framework AspectJ provides a complete pointcut language with
dozens of pointcut types and expression constructs. FLOW3 makes do with
only a small subset of that language, which we think already suffice for even
complex enterprise applications. If you're interested in the original feature set,
it doesn't hurt throwing a glance at the AspectJ Programming Guide [http://
www.eclipse.org/aspectj/doc/released/progguide/index.html].

10.3.2. Pointcut designators
A pointcut expression always consists of two parts: The poincut designator and its
parameter(s). The following designators are supported by FLOW3:

10.3.2.1. method()

The method() designator matches on the execution of methods with a certain name. The
parameter specifies the class and method name, regular expressions can be used for more
flexibility5. It follows the following scheme:

5Internally, PHP's preg_match() function is used to match the method name. The regular expression will be enclosed by /
^...$/ (without the dots of course). Backslashes will be escaped to make namespace use possible without further hassle.

http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/progguide/index.html

38

method(public|protected ClassName->methodName())

Specifying the visibility modifier (public, protected or private) is optional - if none is specified,
any visibility will match. The class- and method name can be specified as a regular
expression. Here are some examples for matching method executions:

Example 1.51. method() pointcut designator

Matches all public methods in class \F3\MyPackage\MyObject:

method(public F3\MyPackage\MyObject->.*())

Matches all delete methods (even protected and private ones) in any class of the package
MyPackage:

method(F3\MyPackage\.*->delete.*())

Note
In other AOP frameworks, including AspectJ™ and Spring™, the method
designator does not exist. They rather use a more fine grained approach with
designators such as execution, call and cflow. As FLOW3 only supports
matching to method execution join points anyway, we decided to simplify things
by allowing only a more general method designator.

10.3.2.2. class()

The class() designator matches on the execution of methods defined in a class with
a certain name. The parameter specifies the class name, again regular expressions are
allowed here. The class() designator follows this simple scheme:

class(classname)

An example for the usage of this designator:

Example 1.52. class() pointcut designator

Matches all methods in class F3\MyPackage\MyObject:

class(F3\MyPackage\MyObject)

10.3.2.3. within()

The within() designator matches on the execution of methods defined in a class of a
certain type. A type matches if the class is a subclass of or implements an interface of the
given name. The within() designator has this simple syntax:

within(type)

An example for the usage of within():

Example 1.53. within() pointcut designator

Matches all methods in classes which implement the logger interface:

within(\F3\FLOW3\Log\LoggerInterface)

Matches all methods in classes which are part of the Foo layer:

within(\F3\FLOW3\FooLayerInterface)

10.3.2.4. classTaggedWith()

The classTaggedWith() designator matches on classes which are tagged with a certain
annotation. As with class and method names, a regular expression can be used to describe
the matching tags. The syntax of this designator is as follows:

classTaggedWith(tag)

39

Example 1.54. classTaggedWith() pointcut designator

Matches all classes which are tagged with an "@entity" annotation:

classTaggedWith(entity)

Matches all classes which are tagged with an annotation starting with "@cool":

classTaggedWith(cool.*)

10.3.2.5. methodTaggedWith()

The methodTaggedWith() designator matches on methods which are tagged with a
certain annotation. As with other pointcut designators, a regular expression can be used to
describe the matching tags. The syntax of this designator is as follows:

methodTaggedWith(tag)

Example 1.55. methodTaggedWith() pointcut designator

Matches all method which are tagged with an "@special" annotation:

methodTaggedWith(special)

10.3.2.6. setting()

The setting() designator matches if the given configuration option is set to TRUE, or if an
optional given comparison value equals to its configured value. You can use this designator
as follows:

Example 1.56. setting() pointcut designator

Matches if "my: configuration: option" is set to TRUE in the current execution
context:

setting(my: configuration: option)

Matches if "my: configuration: option" is equal to "AOP is cool" in the current
execution context: (Note: single and double quotes are allowed)

setting(my: configuration: option = 'AOP is cool')

10.3.2.7. filter()

If the built-in filters don't suit your needs you can even define your own custom
filters. All you need to do is create a class implementing the \F3\FLOW3\AOP
\PointcutFilterInterface and develop your own logic for the matches() method.
The custom filter can then be invoked by using the filter() designator:

filter(CustomFilterObjectName)

Example 1.57. filter() pointcut designator

If the current method matches is determined by the custom filter:

filter(F3\MyPackage\MyCustomPointcutFilter)

10.3.3. Combining pointcut expressions
All pointcut expressions mentioned in previous sections can be combined into a whole
expression, just like you may combine parts to an overall condition in an if construct. The
supported operators are “&&”, “||” and “!” and they have the same meaning as in PHP.
Nesting expressions with parentheses is not supported but you may refer to other pointcuts
by specifying their full name (i.e. class- and method name). This final example shows how
to combine and reuse pointcuts and ultimately build a hierarchy of pointcuts which can be
used conveniently in advice declarations:

40

Example 1.58. Combining pointcut expressions
namespace F3\TestPackage;

/**
 * Fixture class for testing poincut definitions
 *
 * @package TestPackage
 * @aspect
 */
class PointcutTestingAspect {

 /**
 * Pointcut which includes all method executions in pointcutTestingTargetClasses except those from Target Class number 3.
 *
 * @pointcut method(F3\TestPackage\PointcutTestingTargetClass.*->.*()) && !method(F3\TestPackage\PointcutTestingTargetClass3->.*())
 */
 public function pointcutTestingTargetClasses() {}

 /**
 * Pointcut which consists of only the F3\TestPackage\OtherPointcutTestingTargetClass.
 *
 * @pointcut method(F3\TestPackage\OtherPointcutTestingTargetClass->.*())
 */
 public function otherPointcutTestingTargetClass() {}

 /**
 * A combination of both above pointcuts
 *
 * @pointcut F3\TestPackage\PointcutTestingAspect->pointcutTestingTargetClasses || F3\TestPackage\PointcutTestingAspect->otherPointcutTestingTargetClass
 * @author Robert Lemke <robert@typo3.org>
 */
 public function bothPointcuts() {}

 /**
 * A pointcut which matches all classes from the service layer
 *
 * @pointcut within(\F3\FLOW3\ServiceLayerInterface)
 */
 public function serviceLayerClasses() {}

 /**
 * A pointcut which matches any method from the BasicClass and all classes from the service layer
 *
 * @pointcut method(F3\TestPackage\Basic.*->.*()) || within(F3\FLOW3\Service.*)
 */
 public function basicClassOrServiceLayerClasses() {}
}

10.4. Declaring advice
With the aspect and pointcuts in place we are now ready to declare the advice. Remember
that an advice is the actual action, the implementation of the concern you want to weave in
to some target. Advices are implemented as interceptors which may run before and / or after
the target method is called. Four advice types allow for these different kinds of interception:
Before, After returning, After throwing and Around.

Other than being of a certain type, advices always come with a pointcut expression which
defines the set of join points the advice applies for. The pointcut expression may, as we have
seen earlier, refer to other named pointcuts.

10.4.1. Before advice
A before advice allows for executing code before the target method is invoked. However, the
advice cannot prevent the target method from being executed, nor can it take influence on
other before advices at the same join point.

Example 1.59. Declaration of a before advice
 /**
 * Before advice which is invoked before any method call within the News package
 *
 * @before class(F3\News\.*->.*())
 */
 public function myBeforeAdvice(\F3\FLOW3\AOP\JoinPointInterface $joinPoint) {
 }

10.4.2. After returning advice
The after returning advice becomes active after the target method normally returns from
execution (i.e. it doesn't throw an exception). After returning advices may read the result of
the target method, but can't modify it.

41

Example 1.60. Declaration of an after returning advice
 /**
 * After returning advice
 *
 * @afterreturning method(public F3\News\FeedAgregator->[import|update].*()) || F3\MyPackage\MyAspect->someOtherPointcut
 */
 public function myAfterReturningAdvice(\F3\FLOW3\AOP\JoinPointInterface $joinPoint) {
 }

10.4.3. After throwing advice
Similar to the “after returning” advice, the after throwing advice is invoked after method
execution, but only if an exception was thrown.

Example 1.61. Declaration of an after throwing advice
 /**
 * After throwing advice
 *
 * @afterthrowing within(F3\News\ImportantLayer)
 */
 public function myAfterThrowingAdvice(\F3\FLOW3\AOP\JoinPointInterface $joinPoint) {
 }

10.4.4. After advice
The after advice is a combination of “after returning” and “after throwing”: These advices
become active after method execution, no matter if an exception was thrown or not.

Example 1.62. Declaration of an after advice
 /**
 * After advice
 *
 * @after F3\MyPackage\MyAspect->justAPointcut
 */
 public function myAfterAdvice(\F3\FLOW3\AOP\JoinPointInterface $joinPoint) {
 }

10.4.5. Around advice
Finally, the around advice takes total control over the target method and intercepts it
completely. It may decide to call the original method or not and even modify the result of the
target method or return a completely different one. Obviously the around advice is the most
powerful and should only be used if the concern can't be implemented with the alternative
advice types. You might already guess how an around advice is declared:

Example 1.63. Declaration of an around advice
 /**
 * Around advice
 *
 * @around F3\MyPackage\MyAspect->justAPointcut
 */
 public function myAroundAdvice(\F3\FLOW3\AOP\JoinPointInterface $joinPoint) {
 }

10.5. Implementing advice
The final step after declaring aspects, pointcuts and advices is to fill the advices with life.
The implementation of an advice is located in the same method it has been declared. In that
regard, an aspect class behaves like any other object in FLOW3 – you therefore can take
advantage of dependency injection in case you need other objects to fulfill the task of your
advice.

10.5.1. Accessing join points
As you have seen in the previous section, advice methods always expect an argument
of the type \F3\FLOW3\AOP\JoinPointInterface. This join point object contains all
important information about the current join point. Methods like getClassName() or
getMethodArguments() let the advice method classify the current context and enable

42

you to implement advices in a way that they can be reused in different situations. For a full
description of the join point object refer to the API documentation.

10.5.2. Advice chains
Around advices are a special advice type in that they have the power to completely intercept
the target method. For any other advice type, the advice methods are called by the proxy
class one after another. In case of the around advice, the methods form a chain where each
link is responsible to pass over control to the next.

Figure 1.3. Control flow of an advice chain

10.5.3. Examples
Let's put our knowledge into practice and start with a simple example. First we would like to
log each access to methods within certain package. The following code will just do that:

Example 1.64. Simple logging with aspects
namespace F3\MyPackage;

/**
 * A logging aspect
 *
 * @package MyPackage
 * @aspect
 */
class LoggingAspect {

 /**
 * @var \F3\FLOW3\Log\LoggerInterface A logger implementation
 protected $logger;

 /**
 * For logging we need a logger, which we will get injected automatically by
 * the Object Manager
 *
 * @param \F3\FLOW3\Log\SystemLoggerInterface $logger The System Logger
 * @return void
 */
 public function injectSystemLogger(\F3\FLOW3\Log\SystemLoggerInterface $systemLogger) {
 $this->logger = $systemLogger;
 }

 /**
 * Before advice, logs all access to methods of our package
 *
 * @param \F3\FLOW3\AOP\JoinPointInterface $joinPoint: The current join point
 * @return void
 * @before method(F3\MyPackage\.*->.*())
 */
 public function logMethodExecution(\F3\FLOW3\AOP\JoinPointInterface $joinPoint) {
 $logMessage = 'The method ' . $joinPoint->getMethodName() . ' in class ' . $joinPoint->getClassName() . ' has been called.';
 $this->logger->log($logMessage);
 }
}

43

Note that we are using dependency injection for getting the system logger instance to stay
independent from any specific logging implementation. We don't have to care about the kind
of logger and where it comes from.

Finally an example for the implementation of an around advice: For a guest book, we want
to reject the last name “Sarkosh” (because it should be “Skårhøj”), every time it is submitted.
Admittedly you probably wouldn't implement this great feature as an aspect, but it's easy
enough to demonstrate the idea. For illustration purposes, we don't define the pointcut
expression in place but refer to a named pointcut.

Example 1.65. Implementation of an around advice

namespace F3\MyPackage;

/**
 * A lastname rejection aspect
 *
 * @package MyPackage
 * @aspect
 */
class LastNameRejectionAspect {

 /**
 * A pointcut which matches all guestbook submission method invocations
 *
 * @pointcut method(\F3\Guestbook\SubmissionHandlingThingy->submit())
 */
 public function guestbookSubmissionPointcut() {}

 /**
 * Around advice, rejects the lastname "Sarkosh"
 *
 * @param \F3\FLOW3\AOP\JoinPointInterface $joinPoint: The current join point
 * @return mixed Result of the target method
 * @around F3\MyPackage\LastNameRejectionAspect->guestbookSubmissionPointcut
 */
 public function rejectLastName(\F3\FLOW3\AOP\JoinPointInterface $joinPoint) {
 if ($joinPoint->getMethodArgument('lastName') == 'Sarkosh') {
 throw new Exception('Sarkosh is not a valid lastname - should be Skårhøj!');
 }
 $result = $joinPoint->getAdviceChain()->proceed($joinPoint);
 return $result;
 }
}

Please note that if the last name is correct, we proceed with the remaining links in the advice
chain. This is very important to assure that the original (target-) method is finally called. And
don't forget to return the result of the advice chain ...

10.6. Introductions
Introductions (also known as Inter-type Declarations) allow to subsequently implement an
interface in a given target class. The (usually) newly introduced methods (required by the new
interface) can then be implemented by declaring an advice. If no implementation is defined,
an empty placeholder method will be generated automatically to satisfy the contract of the
introduced interface.

10.6.1. Declaring introductions
Like advices, introductions are declared by annotations. But in contrast to advices, the anchor
for an introduction declaration is a property of the aspect class. The annotation tag follows
this syntax:

@introduce NewInterfaceName, PointcutExpression

Although the PoincutExpression is just a normal pointcut expression, which may also
refer to named pointcuts, be aware that only expressions filtering for classes make sense.
You cannot use the method() pointcut designator in this context and will typically take the
class() designator instead.

The following example introduces a new interface NewInterface to the class OldClass
and also provides an implementation of the method newMethod.

44

Example 1.66. Declaring introductions

namespace F3\MyPackage;

/**
 * An aspect for demonstrating introductions
 *
 * @package MyPackage
 * @aspect
 */
class IntroductionAspect {

 /**
 * Introduces \F3\MyPackage\NewInterface to the class \F3\MyPackage\OldClass:
 *
 * @introduce F3\MyPackage\NewInterface, class(F3\MyPackage\OldClass)
 */
 public $newInterface;

 /**
 * Around advice, implements the new method "newMethod" of the "NewInterface" interface
 *
 * @param \F3\FLOW3\AOP\JoinPointInterface $joinPoint: The current join point
 * @return void
 * @around method(F3\MyPackage\OldClass->newMethod())
 */
 public function newMethod(\F3\FLOW3\AOP\JoinPointInterface $joinPoint) {
 // We call the advice chain, in case any other advice is declared for this method,
 // but we don't care about the result.
 $someResult = $joinPoint->getAdviceChain->proceed($joinPoint);

 $a = $joinPoint->getMethodArgument('a');
 $b = $joinPoint->getMethodArgument('b');
 return $a + $b;
 }
}

10.7. Implementation details

10.7.1. AOP proxy mechanism

The following diagram illustrates the building process of a proxy class:

Figure 1.4. Proxy building process

45

11. Persistence Framework

11.1. Introductory Example
Let's look at the following example as an introduction to how FLOW3 handles persistence.
We have a domain model of a Blog, consisting of Blog, Post, Comment and Tag objects:

Figure 1.5. The objects of the Blog domain model

Connections between those objects are built by simple references in PHP, as a look at the
addPost() method of the Blog class shows:

Example 1.67. The Blog's addPost() method

/**
 * @param \F3\Blog\Domain\Post $post
 * @return void
 */
public function addPost(\F3\Blog\Domain\Post $post) {
 $this->posts[$post->getIdentifier()] = $post;
}

The same principles are applied to the rest of the classes, resulting in an object tree of a blog
object holding several posts, those in turn having references to their associated comments
and tags. But now we need to make sure the Blog and the data in it are still available the
next time we need them. In the good old days of programming you might have added some
ugly database calls all over the system at this point. In the currently widespread practice of
loving Active Record you'd still add save() methods to all or most of your objects. But can
it be even easier?

To access an object you need to hold some reference to it. You can get that reference by
creating an object or by following some reference to it from some object you already have.
This leaves you at a point where you need to find that "first object". This is done by using
a Repository. A Repository is the librarian of your system, knowing about all the objects
it manages. In our model the Blog is the entry point to our object tree, so we will add a
BlogRepository, allowing us to find Blogs by the criteria we need.

Now, before we can find a Blog, we need to create and save one. What we do is create
the object (using FLOW3's object factory) and add it to the BlogRepository. This will
automagically persist your Blog and you can retrieve it again later. No save() call needed.
Oh, and the posts, comments and tags in your Blog are persisted as well, of course.

For all that magic to work as expected, you need to give some hints. This doesn't mean you
need to write tons of XML, a few annotations in your code are enough:

46

Example 1.68. Persistence-related annotations in the Blog class
/**
 * A Blog object
 *
 * @package Blog
 * @entity
 */
class Blog {

 /**
 * @var string
 */
 protected $title;

 /**
 * @var array
 */
 protected $posts = array();

 ...

}

The first annotation to note is the @entity annotation, which tells the persistence framework
it needs to persist Blog instances if they have been added to a Repository. In the Blog class
we have some member variables, they are persisted as well by default. The persistence
framework knows their types by looking at the @var annotation you use anyway when
documenting your code (you do document your code, right?). In case of the $posts array the
persistence framework persists the objects held in that array as independent objects. Apart
from those annotations your domain object's code is completely unaware of the persistence
infrastructure.

Let's conclude by taking a look at the BlogRepository code:

Example 1.69. Code of a simple BlogRepository
/**
 * A BlogRepository
 *
 * @package Blog
 */
class BlogRepository extends \F3\FLOW3\Persistence\Repository {

 /**
 * Finds Blogs with a matching name.
 *
 * @param string $name
 * @return array
 */
 public function findByName($name) {
 $query = $this->createQuery();
 return $query->matching($query->equals('name', $name))->execute();
 }
}

As you can see we get away with very little code by simply extending the FLOW3-provided
repository class. Nice, eh? If you like to do things the hard way you can get away with
implementing \F3\FLOW3\Persistence\RepositoryInterface yourself.

11.2. On the priciples of DDD
From Evans, the rules we need to enforce include:

• The root Entity has global identity and is ultimately responsible for checking invariants.

• Root Entities have global identity. Entities inside the boundary have local identity, unique
only within the Aggregate.

• Nothing outside the Aggregate boundary can hold a reference to anything inside, except to
the root Entity. The root Entity can hand references to the internal Entities to other objects,
but they can only use them transiently (within a single method or block).

• Only Aggregate Roots can be obtained directly with database queries. Everything else
must be done through traversal.

• Objects within the Aggregate can hold references to other Aggregate roots.

47

• A delete operation must remove everything within the Aggregate boundary all at once.

• When a change to any object within the Aggregate boundary is committed, all invariants
of the whole Aggregate must be satisfied.

11.3. Persistence-related annotations
The following table lists all annotations used by the persistence framework with their name,
scope and meaning:

Table 1.2. Persistence-related code annotations

Annotation Scope Meaning

@entity Class Declares a class as an Entity.

@valueobject Class Declares a class as a
Value Object, allowing the
persistence framework to
reuse an existing object if one
exists.

@var Variable Is used to detect the type a
variable has.

@transient Variable Makes the persistence
framework ignore the
variable. Neither will it's value
be persisted, nor will it be
touched during reconstitution.

@identifier Variable Marks the variable as
being the object identifier.
This makes the persistence
backend use the value of
this variable as identifier for
the internal representation of
the object. You must make
sure your identifier is unique,
preferably use an UUID.

11.4. Inside the Persistence Framework
To the domain code the persistence handling transparent, aside from the need to add a
few annotations. The custom repositories are a little closer to the inner workings of the
framework, but still the inner workings are very invisible. This is how it is supposed to be,
but a little understanding of how persistence works internally can help understand problems
and develop more efficient client code.

11.4.1. Persisting a domain object
After an object has been added to a repository it will be seen when FLOW3 calls
persistAll() at the end of a script run. Internally all instances implementing the
\F3\FLOW3\Persistence\RepositoryInterface will be fetched and asked for the
objects they hold. Those will then be handed to the persistence backend in use and
processed by it.

FLOW3 defines interfaces for persistence backends and queries, the details of how objects
are persisted and queried are up to the persistence backend implementation. Have a look
at the documentatoin of the respective package for more information. The following diagram
shows (most of) the way an object takes from creation until it is persisted when using the
TYPO3 Content Repository:

48

Figure 1.6. Object persistence process

Keep in mind that the diagram omits some details like dirty checking on objects and how
exactly objects and their properties are stored in the Content Repository.

11.4.2. Querying the storage backend
As we saw in the introductory example there is a query mechanism available that provides
easy fetching of objects through the persistence framework. You ask for instances of a
specific class that match certain filters and get back an array of those reconstituted objects.
Here is a diagram of the internal process when using the TYPO3 Content Repository as
persistence backend:

Figure 1.7. Object querying and reconstitution process

For the developer the complexity is hidden between the query's execute() method and
the array of objects being returned. The QOMFactory, "right" Query and QueryResult
objects are part of the standard JSR-283 API, whereas QueryFactory, "left" Query and
DataMapper are part of the FLOW3 persistence backend implementation that comes with
the TYPO3 Content Repository.

49

Appendix A. Coding Guidelines

1. Coding Guidelines
Coding Standards are an important factor for achieving a high code quality. A common visual
style, naming conventions and other technical settings allow us to produce a homogenous
code which is easy to read and maintain. However, not all important factors can be covered
by rules and coding standards. Equally important is the style in which certain problems are
solved programmatically - it's the personality and experience of the individual developer
which shines through and ultimately makes the difference between technically okay code or
a well considered, mature solution.

These guidelines try to cover both, the technical standards as well as giving incentives for
a common development style. These guidelines must be followed by everyone who creates
code for the FLOW3 core. Because TYPO3 is based on FLOW3, it follows the same principles
- therefore, whenever we mention FLOW3 in the following sections, we equally refer to
TYPO3. We hope that you feel encouraged to follow these guidelines as well when creating
your own packages and FLOW3 based applications.

1.1. Code formatting and layout
aka "beautiful code"

The visual style of programming code is very important. In the TYPO3 project we want many
programmers to contribute, but in the same style. This will help us to:

• Easily read/understand each others code and consequently easily spot security problems
or optimization opportunities

• It is a signal about consistency and cleanliness, which is a motivating factor for
programmers striving for excellence

Some people may object to the visual guidelines since everyone has his own habits. You will
have to overcome that in the case of FLOW3; the visual guidelines must be followed along
with coding guidelines for security. We want all contributions to the project to be as similar
in style and as secure as possible.

1.1.1. General considerations

• Nearly any PHP file in FLOW3 contains exactly one class and does not output anything if it
is called directly. Therefore you start you file with a <?php tag and end it with the closing ?>.

• Every file must contain a header stating encoding, namespace, copyright and licensing
information

1. Declare your namespace. The namespace must start with "F3"!

2. Because it is likely that more than one person will work on a class in the long run,
we recommend adding a copyright statement like “Copyright belongs to the respective
authors” and add yourself to the list of authors for the methods you implemented.

3. If you modify a library you must document what you have changed (GPL requirement).
Add your name as author / co-author to these modifications.

4. The importance of the header is primarily to state that the code is GPL'ed. And
remember only GPL compatible software is allowed to interface with FLOW3 (according
to GPL itself).

5. The copyright header itself must not start with /**, as this may confuse documentation
generators!

50

Example A.1. The FLOW3 standard file header

<?php
declare(ENCODING = 'utf-8');
namespace F3\Your\Stuff\Here;

/* *
 * This script is part of the TYPO3 project - inspiring people to share! *
 * *
 * TYPO3 and FLOW3 are free software; you can redistribute them and/or *
 * modify them under the terms of the GNU General Public License version 2 *
 * as published by the Free Software Foundation. *
 * *
 * This script is distributed in the hope that it will be useful, but *
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- *
 * TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General *
 * Public License for more details. *
 * */

• Code lines are of arbitrary length, no limitations to 80 characters or something similar (wake
up, graphical displays have been available for decades now...)

• Lines end with a newline a.k.a chr(10) - UNIX style

• Files must be encoded in UTF-8

1.1.2. Indentation and line formatting
Indentation is done with tabs - and not spaces! The beginning of a line is the only place where
tabs are used, in all other places use spaces. Always trim whitespace off the end of a line.

Here's a code snippet which shows the correct usage of tabs and spaces:

Example A.2. Correct use of tabs and spaces

/*###*
#*#Some#comment##*
#*###*/

/**
#*#Returns#the#name#of#the#currently#set#context.
#*
#*#@return#string#Name#of#the#current#context
#*#@author#Your Name <your@email.here>
#*/
public#function#getContext()#{
» return#$this->context;
}

There seem to be very passionate opinions about whether TABs or spaces should be
used for indentation of code blocks in the scripts. If you'd like to read more about this
religious discussion, you find some nice arguments in the Joels on Software forum [http://
discuss.fogcreek.com/joelonsoftware/default.asp?cmd=show&ixPost=3978].

1.1.3. Naming
Naming is a repeatedly undervalued factor in the art of software development. Although
everybody seems to agree on that nice names are a nice thing to have, most developers
choose cryptic abbreviations in the end (to save some typing). Beware that we TYPO3 core
developers are very passionate about naming (some people call it fanatic, well ...). In our
opinion spending 15 minutes (or more ...) just to find a good name for a method is well spent

http://discuss.fogcreek.com/joelonsoftware/default.asp?cmd=show&ixPost=3978
http://discuss.fogcreek.com/joelonsoftware/default.asp?cmd=show&ixPost=3978
http://discuss.fogcreek.com/joelonsoftware/default.asp?cmd=show&ixPost=3978

51

time! There are zillions of reasons for using proper names and in the end they all lead to
better readable, manageable, stable and secure code.

• As a general note, english words (or abbreviations if neccessary) must be used for all class
names, method names, comments, variables names, database table and field names.
Although PHP6 allows for using funny japanese, tibetian or don't-know-what characters,
the consensus is that english is much better to read for the most of us.

• If acronyms or abbreviations are embedded in names, keep them in the case they usually
are, i.e. keep URL uppercase, also when used in a method name like getURLForLink(),
ACMEManager etc.

1.1.3.1. Package names

All package names are written in UpperCamelCase. In order to avoid problems with different
filesystems, only the characters a-z, A-Z and 0-9 are allowed for package names – don't use
special characters.

1.1.3.2. Namespace names

Only the characters a-z, A-Z and 0-9 are allowed for namespace names – don't use special
characters. All namespace names are written in UpperCamelCase, all uppercase names
are allowed for well established abbreviations.

Note
When specifying class names to PHP, always reference the global namespace
inside namespaced code by using a leading backslash. When referencing
a class name inside a string (e.g. given to the create-Method of the
ObjectFactory, in pointcut expressions or in YAML files), never use a leading
backslash. This follows the native PHP notion of names in strings always being
seen as fully qualified.

1.1.3.3. Class names

Only the characters a-z, A-Z and 0-9 are allowed for class names – don't use special
characters.

All class names are written in UpperCamelCase, all uppercase names are allowed for well
established abbreviations. Class names must be nouns, never adjectives.

The name of abstract classes should start with the word "Abstract".

A few examples follow:

Example A.3. Correct naming of classes

• \F3\FLOW3\Object

• \F3\FLOW3\Object\Manager

• \F3\MyPackage\MyObject\MySubObject

• \F3\MyPackage\MyObject\MyHTMLParser

• \F3\Foo\Controller\DefaultController

• \F3\MyPackage\MyObject\AbstractLogger

Example A.4. Incorrect naming of classes

• \myClass

• \F3\Urlwrapper

• \someObject\classname

• \F3\MyPackage\MyObjectMySubObject

52

1.1.3.4. Interface names

Only the characters a-z, A-Z and 0-9 are allowed for interface names – don't use special
characters.

All interface names are written in UpperCamelCase, all uppercase names are allowed for
well established abbreviations. Interface names must be adjectives or nouns and have the
Interface suffix. A few examples follow:

Example A.5. Correct naming of interfaces

• \F3\FLOW3\Object\ObjectInterface

• \F3\FLOW3\Object\ManagerInterface

• \F3\MyPackage\MyObject\MySubObjectInterface

• \F3\MyPackage\MyObject\MyHTMLParserInterface

Example A.6. Incorrect naming of interfaces

• \myInterface

• \F3\Urlwrapper

• \IsomeObject\classname

• \F3\FLOW3\Object\Manager\Interface

1.1.3.5. Exception names

Exception naming basically follows the rules for naming classes. There are two possible
types of exceptions: Generic exceptions and specific exceptions. Generic exceptions should
be named "Exception" preceeded by their namespace. Specific exceptions should reside in
their own sub-namespace and must not contain the word Exception.

Example A.7. Correct naming of exceptions

• \F3\FLOW3\Object\Exception

• \F3\FLOW3\Object\Exception\InvalidClassName

• \F3\MyPackage\MyObject\Exception

• \F3\MyPackage\MyObject\Exception\OutOfCoffee

1.1.3.6. Method names

All method names are written in lowerCamelCase, all uppercase names are allowed for well
established abbreviations. In order to avoid problems with different filesystems, only the
characters a-z, A-Z and 0-9 are allowed for method names – don't use special characters.

Make method names descriptive, but keep them concise at the same time. Constructors must
always be called __construct(), never use the class name as a method name.

A few examples:

Example A.8. Correct naming of methods

• myMethod()

• someNiceMethodName()

• betterWriteLongMethodNamesThanNamesNobodyUnderstands()

• singYMCALoudly()

• __construct()

53

1.1.3.7. Variable names

Variable names are written in lowerCamelCase and should be

• self-explaining

• not shortened beyond recognition, but rather longer if it makes their meaning clearer

The following example shows two variables with the same meaning but different naming.
You'll surely agree the longer versions are better (don't you ...?).

Example A.9. Correct naming of variables

• $singletonObjectsRegistry

• $argumentsArray

• $aLotOfHTMLCode

Example A.10. Incorrect naming of variables

• $sObjRgstry

• $argArr

• $cx

As a special exception you may use variable names like $i, $j and $k for numeric indexes
in for loops if it's clear what they mean on the first sight. But even then you might want to
avoid them.

1.1.3.8. Constant names

All constant names are written in UPPERCASE. This includes TRUE, FALSE and NULL. Words
can be separated by underscores - you can also use the underscore to group constants
thematically:

Example A.11. Correct naming of constants

• STUFF_LEVEL

• COOLNESS_FACTOR

• PATTERN_MATCH_EMAILADDRESS

• PATTERN_MATCH_VALIDHTMLTAGS

It is, by the way, a good idea to use constants for defining regular expression patterns (as
seen above) instead of defining them somewhere in your code.

1.1.3.9. File names

These are the rules for naming files:

• All file names are UpperCamelCase.

• Class and interface files are named according to the class or interface they represent

• Each file must contain only one class or interface

• Names of files containing code for unit tests must be the same as the class which is tested,
appended with "Test.php".

54

Here are some examples:

Example A.12. File naming in FLOW3

• F3_TemplateEngine_TemplateEngineInterface.php

Contains the interface \F3\TemplateEngine\TemplateEngineInterface which is
part of the package \F3\TemplateEngine

• F3_Error_RuntimeException.php

Contains the \F3\Error\RuntimeException being a part of the package \F3\Error

• F3_DataAccess_Manager.php

Contains class \F3\DataAccess\Manager which is part of the package \F3\DataAccess

• F3_FLOW3_Package_Manager.php

Contains the class \F3\FLOW3\Package\Manager which is part of the package
\F3\FLOW3

• F3_FLOW3_Package_ManagerTest.php

Contains the class \F3\FLOW3\Package\ManagerTest which is a test case for
PHPUnit.

1.1.4. PHP code formatting

1.1.4.1. Strings

In general, we use single quotes to enclose literal strings:

Example A.13. String literals

$vision = 'Inspiring people to share';

If the string itself contains single quotes or apostrophes, we use double quotes:

Example A.14. String literals enclosed by double quotes

$message = "'Kasper' is the name of the friendly ghost.";

If you'd like to insert values from variables, we recommend to concatenate strings or use
double quotes in the following form:

Example A.15. Variable substitution

$message = 'Hey ' . $name . ', you look ' . $look . ' today!';
$message = "Hey $name, you look $look today!";

As you've seen in the previous example, we concatenate strings by using the dot operator.
A space must be inserted before and after the dot for better readability:

Example A.16. Concatenated strings

$vision = 'Inspiring people ' . 'to share.';

You may break a string into multiple lines if you use the dot operator. You'll have to indent
each following line to mark them as part of the value assignment:

55

Example A.17. Multi-line strings

$vision = 'Inspiring' .
 'people ' .
 'to ' .
 'share';

1.1.4.2. Arrays

1.1.4.3. Classes

...

Example A.18. Classes

namespace F3\MyPackage;

class MyObject {

}

1.1.4.4. Functions and methods

1.1.4.5. if statements

• There needs to be one space between the if keyword and the opening brace "("

• ...

Example A.19. if statements

if ($something || $somethingElse) {
 doThis();
} else {
 doSomethingElse();
}

if (allGoesWrong()) throw new Exception('Hey, all went wrong!');

if (weHaveALotOfCriteria()
 && notEverythingFitsIntoOneLine()
 || youJustTendToLikeIt()) {
 doThis();

} else {
 ...
}

1.2. Documentation
All code must be documented with inline comments. The syntax is that known from the
Java programming language (JavaDoc). This way code documentation can automatically
be generated using tools like phpDocumentor or Doxygen. The "official" tool used is
phpDocumentor1, so syntax and documentation usage are chosen to work best with it.

1We look into Doxygen as well, currently both tools have problems with using namespaces in PHP.

56

1.2.1. Documentation blocks
A file can contain different documentation blocks, relating to the file itself, the class in the
file and finally the members of the class. A documentation block is always used for the entity
it precedes.

1.2.1.1. File documentation

The first documentation block in the file is essential for defining the package the file and
it's contents belong to. Although it would not be strictly needed to have the file level
documentation block (because each file contains only one class in FLOW3), we still use it
because it

• avoids warnings when rendering the documentation

• makes sure that even code outside of classes is assigned to the correct package and
documented correctly

That means that each file must contain a documentation block like shown below, right below
the header stating the license:

Example A.20. Standard file level documentation block

/**
 * @package [packagename]
 * @subpackage [subpackage name if necessary]
 * @version Id
 */

The package tag is mandatory, the subpackage tag is optional and should only be used if
needed.

Id, Subversion and keyword expansion
The Id in the version tag will be expanded with information about the file
version by Subversion. This so-called keyword expansion needs to be explicitly
enabled, though! We recommend to put this into your ~.subversion/config
file:

Example A.21. Suggested configuration for Subversion in
~/.subversion/config

[miscellany]
global-ignores = #*# *.rej *.orig *.bak *~ .*
log-encoding = utf-8
enable-auto-props = yes
[auto-props]
*.php = svn:keywords=Id Revision

This does a little more than just enable the keyword expansion, it also sets the
character encoding for the log messages and makes Subversion ignore some
standard backup and metadata filenames.

1.2.1.2. Class documentation

Classes have their own documentation block describing the classes purpose, assigning a
package and subpackage. Very often the code within a class is expanded and modified
by a number of authors. We therefore recommend to add the names of the developers to
the method documentation. An exception should be the documentation for interfaces where
you list all authors in the interface documentation. Exceptions itself never have an author
annotation.

57

Example A.22. Standard class documentation block

/**
 * First sentence is short description. Then you can write more, just as you like
 *
 * Here may follow some detailed description about what the class is for.
 *
 * Paragraphs are seperated by a empty line.
 *
 * @package [packagename]
 * @subpackage [subpackage name if necessary]
 * @version Id
 * @license http://www.gnu.org/licenses/lgpl.html GNU Lesser General Public License, version 3 or later
 */
class SomeClass {
 ...

Example A.23. Standard interface documentation block

/**
 * First sentence is short description. Then you can write more, just as you like
 *
 * Here may follow some detailed description about what the interface is for.
 *
 * Paragraphs are seperated by a empty line.
 *
 * @package [packagename]
 * @subpackage [subpackage name if necessary]
 * @version Id
 * @license http://www.gnu.org/licenses/lgpl.html GNU Lesser General Public License, version 3 or later
 * @author Your Name <your@email.here>
 */
interface SomeInterface {
 ...

Example A.24. Standard exception documentation block

/**
 * First sentence is short description. Then you can write more, just as you like
 *
 * Here may follow some detailed description about what the interface is for.
 *
 * Paragraphs are seperated by a empty line.
 *
 * @package [packagename]
 * @subpackage [subpackage name if necessary]
 * @version Id
 * @license http://www.gnu.org/licenses/lgpl.html GNU Lesser General Public License, version 3 or later
 */
class SomeException extends \Exception {
 ...

Additional tags or annotations, such as @see or @aspect, can be added as needed.

1.2.1.3. Documenting variables, constants, includes

Properties of a class should be documented as well. We use the short version for
documenting them:

58

Example A.25. Standard variable documentation block

/**
 * A short description, very much recommended
 * @var string
 */
protected $title = 'Untitled';

1.2.1.4. Method documentation

For a method, at least all parameters and the return value must be documented. Please also
add your name by using the @author tag. The @access tag must not be used as it makes
no sense (we're using PHP >= 5 for some reason, don't we?)

Example A.26. Standard method documentation block

/**
 * A description for this method
 *
 * Paragraphs are seperated by a empty line.
 *
 * @param \F3\FLOW3\Log\LoggerInterface $logger A logger
 * @param string $someString This parameter should contain some string
 * @return void
 * @author Your Name <your@email.here>
 */
public function __construct(\F3\FLOW3\Log\LoggerInterface $logger, $someString) {
 ...

A special note about the @param tags: The parameter type and name are seperated by one
space, not aligned. Do not put a colon after the parameter name. Always document the return
type, even if it is void - that way it is clearly visible it hasn't just been forgotten.

1.2.2. Documentation tags
There are quite a few documentation tags that can be used. Here is a list of tags that can
and should be used within the TYPO3 project:

• @author

• @copyright

• @deprecated

• @example

• @filesource

• @global

• @ignore

• @internal

• @license

• @link

• @package

• @param

• @return

• @see

59

• @since

• @subpackage

• @todo

• @uses

• @var

• @version

Some are useless for PHP5 and PHP6, such as the tag for declaring a variable or method
private:

• @access

Important
If you are unsure about the meaning or ose of those tags, look them up in the
phpDocumentor manual, rather than doing guesswork.

Note
There are more tags which are used in FLOW3, however their purpose is not
documention but configuration. Currently annotations are also used for defining
aspects and advices for the AOP framework as well as for giving instructions to
the Persistence framework.

1.3. Coding

1.3.1. Overview
This section gives you an overview of FLOW3's coding rules and best practices.

1.3.2. General PHP best practices

• All code should be object oriented. This means there should be no functions outside
classes if not absolutely necessary. If you need a "container" for some helper methods,
consider creating a static class.

• All code must make use of PHP5 / PHP6 advanced features for object oriented
programming.

• Use PHP namespaces (see http://www.php.net/manual/language.namespaces.php)

• Always declare the scope (public, protected, private) of classes and member variables

• Make use of iterators and exceptions, have a look at the SPL (see http://www.php.net/
manual/ref.spl.php)

• Make use of type-hinting wherever possible (see http://www.php.net/manual/
language.oop5.typehinting.php)

• Always use <?php as opening tags (never only <?)

• Add an encoding declaration as the first line of your PHP code, followed by the namespace
declaration. For TYPO3 the encoding must be UTF-8

Example A.27. Encoding statement for .php files

<?php
declare(ENCODING = 'utf-8');
namespace F3\Your\Stuff\Here;

...

http://www.php.net/manual/language.namespaces.php
http://www.php.net/manual/ref.spl.php
http://www.php.net/manual/ref.spl.php
http://www.php.net/manual/language.oop5.typehinting.php
http://www.php.net/manual/language.oop5.typehinting.php

60

1.3.2.1. Comments

In general, comments are a good thing and we strive for creating a well-documented source
code. However, inline comments can often be a sign for a bad code structure or method
naming.2As an example, consider the following code:

Example A.28. Bad coding smell: Comments

 // We only allow valid persons:
if (is_object($p) && strlen($p->lastN) > 0 && $p->hidden === FALSE && $this->environment->moonPhase === MOON_LIB::CRESCENT) {
 $xmM = $thd;
}

This is a perfect case for the refactoring technique "extract method": In order to avoid the
comment, create a new method which is as explanatory as the comment:

Example A.29. Smells better!

if ($this->isValidPerson($person) {
 $xmM = $thd;
}

Bottom line is: You may (and are encouraged to) use inline comments if they support the
readability of your code. But always be aware of possible design flaws you probably try to
hide with them.

1.3.3. Error handling and exceptions
FLOW3 makes use of a hierarchy for its exception classes. The general rule is to throw
preferably specific exceptions and usually let them bubble up until a place where more
general exceptions are catched. Consider the following example:

Some method tried to retrieve an object from the object manager. However, instead
of providing a string containing the object name, the method passed an object (of
course not on purpose - something went wrong). The object manager now throws an
InvalidObjectName exception. In order to catch this exception you can, of course, catch
it specifically - or only consider a more general Object exception (or an even more general
FLOW3 exception). This all works because we have the following hierarchy:

+ \F3\FLOW3\Exception
 + \F3\FLOW3\Object\Exception
 + \F3\FLOW3\Object\Exception\InvalidObjectName

1.3.4. Cross platform issues

2This is also referred to as a bad "smell" in the theory of Refactoring. We highly recommend reading "Refactoring" by Martin
Fowler - if you didn't already.

	FLOW3
	Table of Contents
	Chapter 1. FLOW3
	1. Introduction
	1.1. Overview

	2. FLOW3 Bootstrap
	2.1. Application Context
	2.2. Boot Sequence

	3. Packages
	3.1. Files and Locations
	3.2. Package Keys
	3.3. Importing and Installing Packages
	3.4. Package Manager
	3.5. Creating a New Package
	3.6. Package Meta Information

	4. Object Framework
	4.1. Creating Objects
	4.1.1. Object Scopes
	4.1.2. Creating Prototypes
	4.1.3. Retrieving Singletons
	4.1.4. Passing constructor arguments
	4.1.5. Lifecycle methods

	4.2. Object Registration and API
	4.2.1. Object Framework API
	4.2.2. Object names and types

	4.3. Object dependencies
	4.3.1. Dependency Injection
	4.3.1.1. Constructor Injection
	4.3.1.2. Setter Injection
	4.3.1.3. Settings Injection

	4.3.2. Required and Optional Dependencies
	4.3.3. Dependency Resolution

	4.4. Configuring objects
	4.4.1. Configuration Sources
	4.4.1.1. Objects.yaml
	4.4.1.2. Objects.php
	4.4.1.3. Annotations

	4.4.2. Overriding Object Implementations
	4.4.3. Configuring Injection
	4.4.3.1. Injection Values
	4.4.3.2. Constructor Injection
	4.4.3.3. Setter Injection
	4.4.3.4. Injection of Objects Specified in Settings
	4.4.3.5. Nested Object Configuration
	4.4.3.6. Disabling Autowiring

	4.4.4. Custom Factories
	4.4.5. Name of Lifecycle Methods

	5. Configuration Framework
	5.1. Configuration Files
	5.1.1. File Locations

	5.2. Defining Configuration
	5.2.1. Configuration Formats
	5.2.2. YAML
	5.2.3. PHP
	5.2.4. Constants (special case)

	5.3. Accessing Configuration
	5.3.1. Working with Settings
	5.3.2. Manually Retrieving Settings
	5.3.3. Working with other configuration

	6. Resource Manager
	7. MVC Framework
	7.1. Introduction
	7.1.1. Model-View-Controller
	7.1.2. Other Patterns Used
	7.1.3. Hello World!
	7.1.4. Recommended File Structure
	7.1.5. From the URI to the view

	7.2. Request and Response
	7.2.1. Request Processing Overview
	7.2.2. Request Handler
	7.2.3. Request Builder
	7.2.4. Request Processors
	7.2.5. Request Dispatcher
	7.2.6. Request Types
	7.2.6.1. Web Request / Response
	7.2.6.2. CLI Request / Response
	7.2.6.3. AJAX Request / Response

	7.3. Controller
	7.3.1. Action Controller
	7.3.1.1. Initialization Methods
	7.3.1.2. Configuration
	7.3.1.3. Supported Request Types
	7.3.1.4. Arguments
	7.3.1.5. Action Methods
	7.3.1.6. Action View

	7.3.2. Other Controllers
	7.3.2.1. Abstract Controller
	7.3.2.2. Request Handling Controller
	7.3.2.3. Default Controller

	7.4. View
	7.4.1. Template View
	7.4.2. Special Views
	7.4.2.1. Default View
	7.4.2.2. Empty View

	7.5. Helpers
	7.6. Model
	7.7. Routing
	7.8. CLI request handling

	8. Cache Framework
	9. Error and Exception Handling
	10. AOP Framework
	10.1. Introduction
	10.1.1. AOP concepts and terminology
	10.1.2. FLOW3 AOP concepts
	10.1.3. Implementation overview

	10.2. Aspects
	10.3. Pointcuts
	10.3.1. Pointcut expressions
	10.3.2. Pointcut designators
	10.3.2.1. method()
	10.3.2.2. class()
	10.3.2.3. within()
	10.3.2.4. classTaggedWith()
	10.3.2.5. methodTaggedWith()
	10.3.2.6. setting()
	10.3.2.7. filter()

	10.3.3. Combining pointcut expressions

	10.4. Declaring advice
	10.4.1. Before advice
	10.4.2. After returning advice
	10.4.3. After throwing advice
	10.4.4. After advice
	10.4.5. Around advice

	10.5. Implementing advice
	10.5.1. Accessing join points
	10.5.2. Advice chains
	10.5.3. Examples

	10.6. Introductions
	10.6.1. Declaring introductions

	10.7. Implementation details
	10.7.1. AOP proxy mechanism

	11. Persistence Framework
	11.1. Introductory Example
	11.2. On the priciples of DDD
	11.3. Persistence-related annotations
	11.4. Inside the Persistence Framework
	11.4.1. Persisting a domain object
	11.4.2. Querying the storage backend

	Appendix A. Coding Guidelines
	1. Coding Guidelines
	1.1. Code formatting and layout
	1.1.1. General considerations
	1.1.2. Indentation and line formatting
	1.1.3. Naming
	1.1.3.1. Package names
	1.1.3.2. Namespace names
	1.1.3.3. Class names
	1.1.3.4. Interface names
	1.1.3.5. Exception names
	1.1.3.6. Method names
	1.1.3.7. Variable names
	1.1.3.8. Constant names
	1.1.3.9. File names

	1.1.4. PHP code formatting
	1.1.4.1. Strings
	1.1.4.2. Arrays
	1.1.4.3. Classes
	1.1.4.4. Functions and methods
	1.1.4.5. if statements

	1.2. Documentation
	1.2.1. Documentation blocks
	1.2.1.1. File documentation
	1.2.1.2. Class documentation
	1.2.1.3. Documenting variables, constants, includes
	1.2.1.4. Method documentation

	1.2.2. Documentation tags

	1.3. Coding
	1.3.1. Overview
	1.3.2. General PHP best practices
	1.3.2.1. Comments

	1.3.3. Error handling and exceptions
	1.3.4. Cross platform issues

