Fluid Templating System

Sebastian Kurflrst

Fluid Templating System

Sebastian Kurfirst
Copyright © 2008, 2009 Sebastian Kurfrst

Abstract
Fluid is a Templating System which is used by default for FLOW3-based applications.

Table of Contents

R [1 oo (B 1o o TSRO 1
LTAV = o (o= T Ao (o PP 1
Y= 1 1] 0L PP 1

2. USEN MBNUEL ..o e e et e e e e e et 3
RS o oo o= o] P 3

Variahles and ODJECE ACCESSOISuiituieireeei e et et e e e e e e e e e e e e e e e e et e et e e e et e e aaneeennns 3
RV L= YT =T o= S 3
N = Y PP 5
Passing data tO the VIBWoeeiiiii e e e e e e e e e e e e e e e 5
= Y01 | PP 5
RV AY LT To = W = Y011 | 5
L LS T g = T = Y | 6
WItiNG YOUr OWN VIEBW HEIPEN ... e e e e aa s 6
TN E= 4T o = o 10 T= g1 6
ReNdering the VIeW HEIPEr ... e e e e 7
TagBasedV i EWHEI PEN .. .oeeiii e e 8
oL PP 10
Standard View HEIPEr Libraryco.iiiiiiiiic e e e e et e e e e ees 10

S o) 4T = (=T I L= o o S 11
D= Lo T D= ol = o] L 11
LI =T o (PP 11
The upper 1ayers fOr FLOWS ... e e e e e e e e e e e e e e e ean s 11

o I = o T 1= o P 12

LI o = 0 1= U 0 T 13

List of Examples

O 2 7= ol T T o o) =
2.1. Tags and NameSPaCe AECIAIALIONScuueiiiieeii et e e e e e e e e e e e e e e e e e et e e et e e et eeaaneeeanaas
2.2. Creating a link With @rgUMENTSiiiiicii e e e e e e e e e e e e et e et e e e e eeanees
2.3, AN EXAMPIE TAYOUL ... ooeiiii et e e e e e e e e e e et e e et e e et e e e e e e et e e a e e aae
2.4. A template for the @DOVE [AYOULcouiiii e e e e e
A N0l =gt i T = T o) o

Chapter 1. Introduction

Fluid is a next-generation templating engine which was engineered with several goalsin mind:
e Simplicity

¢ Flexibility

 Extensibility

» Easeof use

This templating engine should not be bloated, instead, we try to do it "The Zen Way" - you do not need to learn too
many things, thus you can concentrate on getting your things done, while the template engine handles everything
you do not want to care about. In XML Schema aware editors (like Eclipse), you even get autocompletion and inline
help support while writing your template.

What does it do?

In the current MV C system of FLOW3, the View currently does not have a lot of functionality. The standard view
providesar ender method, and nothing more. That makesit cumbersometo write powerful views, asmost designers
will not write PHP code.

That is where the Template Engine comes into play: It "lives' inside the View, and is controlled by a specia
Tenpl at eVi ewwhichinstanciatesthe Template Parser, resolvesthetemplate HTML file, and rendersthetemplate
afterwards.

Example

Below, you'll find a snippet of areal-world template displaying alist of blog postings. Use it to check whether you
find the template language intuitive (we hope you will ;-))

Example 1.1. Basic Fluid Example

{namespace f 3=F3\Fl ui d\ Vi ewHel per s}
<html >
<head><titl e>Bl og</titl e></head>
<body>
<h1>Bl og Posti ngs</hil>
<f3: for each="{postings}" as="posting">
<h2>{posting.title}</h2>
<di v cl ass="aut hor">{posting. aut hor. nane} {posting.author.enunil}</div>
<p><f3:1ink action="details" argunents="{id : posting.id}">{posting.teaser}</f3:
</f3:for>
</ body>
</htm >

The Namespace Import makes the F3\ Fl ui d\ Vi ewHel per namespace available under the shorthand f 3.
Thisisimportant for View Helpers, likethe<f 3: | i nk / > tag.

This essentially correspondsto f or each($posti ngs as $posting) in PHP.

With the dot-notation ({ posti ng. titl e}, or{posti ng. aut hor. name}), you can traverse objects. In
the latter example, the system calls $post i ng- >get Aut hor () - >get Nane() .

The<f 3:1ink>...</f3:1ink>tagisaso-caled ViewHelper. It callsarbitary PHP code, and in this case
renders alink to the "details’-Action.

Thereisalot more to show, including:

« Layouts

Introduction

» Autocompletion in Eclipse
» Custom View Helpers

We invite you to explore Fluid some more, and please do not hesitate to give feedback!

Chapter 2. User Manual

This chapter describes all thingsthe users of the templating system needsto know. After you'veread theintroduction,
you can dive into the concepts of Fluid which are relevant to you.

The chapter starts with an overview of basic concepts, continues with using layouts, and finishes with how to write
your own view helpers.

Basic concepts

This section describes all basic concepts available.
Thisincludes:

» Variables/ Object Accessors

» View Helpers

e Arrays

Variables and Object Accessors

A templating system would be quite pointless if it was not possible to display some external data in the templates.
That's what variables are for:

Suppose you want to output the title of your blog, you could write the following snippet into your controller:
$t hi s->vi ew >assign(' blogTitle', $blog->getTitle());

Then, you could output the blog title in your template with the following snippet:

<h1>This blog is called {blogTitle}</hl>

Now, you might want to extend the output by the blog author as well. To do this, you could repeat the above steps,
but that would be quite inconvenient and hard to read. !

That's why the template language has a special syntax for object access, demonstrated below. A nicer way of
expressing the above is the following:

This should go into the controller:

$t hi s->vi ew >assi gn(' bl og', $blog);

This should go into the tenplate:

<h1>This blog is called {blog.title}, witten by {blog.author}</hi>

Instead of passing strings to the template, we are passing whole objects around now - which is much nicer to use both
from the controller and the view side. To access certain properties of these objects, you can use Object Accessors.
By writing { bl og. ti tl e}, thetemplate enginewill call aget Ti t | e() method onthebl og object, if it exists.
Besides, you can use that syntax to traverse associative arrays and public properties.

Tip

Deep nesting is supported: If you want to output the email address of the blog author, then you can use
{bl og. aut hor . emai | } , whichinternally calls $bl og- >get Aut hor () - >get Emai | ().

View Helpers

All output logic is placed in View Helpers.

1Besides, the semantics between the controller and the view should be the followi ng: The controller says to the view "Please render the blog object | give to
you", and not "Please render the Blog title, and the blog posting 1, ...". That's why passing objects to the view is highly encouraged.

User Manud

The view helpers are invoked by using XML tags in the template, and are implemented as PHP classes (more on
that |ater).

This concept is best understood with an example:

Example 2.1. Tags and Namespace declar ations

{nanespace f3=F3\Fl ui d\ Vi ewHel pers}#
<f3:1ink controller="Adm ni strati on">Adm ni stration</f3:1ink>

Namespace Declaration: Y ou import the PHP Namespace F3\ Fl ui d\ Vi ewHel per s under the prefix f 3.2
Cdling the View Helper: The<f 3: link...> ... </f3:1ink>tagrendersalink.

Now, the main difference between Fluid and other templating enginesis how the view helpers areimplemented: For
each view helper, there exists a corresponding PHP class. Let's see how this works for the example above:

The<f 3:1i nk /> tagisimplemented intheclass\ F3\ Fl ui d\ Vi ewHel per s\ Li nkVi ewHel per.
The class name of such aview helper is constructed for agiven tag as follows:

e Thefirst part of the class name is the namespace which was imported (the namespace prefix f3 was expanded to
its full namespace F3\ Fl ui d\ Vi ewHel per s)

» The unqualified name of the tag, without the prefix, is capitalized (Li nk) , and the postfix Vi ewHel per is
appended.

The tag and view helper concept is the core concept of Fluid. All output logic is implemented through such
ViewHelpers/ Tags! Thingslikei f/ el se, f or, ... are all implemented using custom tags - a main difference to
other templating languages.

Some benefits of this approach are:
» You cannot override aready existing view helpers by accident.
* Itisvery easy to write custom view helpers, which live next to the standard view helpers

» All user documentation for a view helper can be automatically generated from the annotations and code
documentation. This includes Eclipse autocompletion®

Most view helpers have some parameters. These can be plain strings, just like in <f3:1ink
controller="Adm nistration">...</f3:1ink>, but as well arbitary objects. Parameters of view
helpers will just be parsed with the same rules as the rest of the template, thus you can pass arrays or objects as
parameters.

Thisis often used when adding arguments to links:

Example 2.2. Creating a link with arguments
<f3:1ink controller="Blog" action="show' arguments="{id : blogPost.id}">. .. read n

Here, the view helper will get a parameter called ar gunent s which is of type array.
Warning

Make sure you do not put a space before or after the opening or closing brackets of an array. If you type
argunents=" {id : bl ogPost.id}" (noticethe space beforethe opening curly bracket), the array
isautomatically casted to a string (as a string concatenation takes place).

This also applies when using object accessors: <f 3: do. sonet hing wi th="{object}" /> and
<f 3: do. sonet hi ng wi th=" {object}" />aresubstantialy different: Inthefirst case, the view
helper will receive an object as argument, while in the second case, it will receive a string as argument.

This might first seem like a bug, but actually it isjust consistent that it works that way.

User Manud

Arrays

Some view helpers, like the Sel ect Vi ewHel per (which renders an HTML select dropdown box), need to get
associative arrays as arguments (mapping from internal to displayed name). See the following example how this
works:

<f3:formsel ect options="{edit: "Edit item, delete: 'Delete item}" />

The array syntax used hereis very similar to the JSON object syntax“. Thus, the left side of the associative array is
used as key without any parsing, and the right side can be either:

anumber
{a: 1,
b: 2
}

a string; Needs to be in either single- or double quotes. In a double-quoted string, you need to escape the " with
a\infront (and vice versafor single quoted strings).

{a: "Hallo',
b : "Second string with escaped \" (double quotes) but not escaped ' (single qu

}
anested array

{a: {
al : "blal",
a2 : "bla2"
}1
b : "hallo"

}

avariable reference (=an object accessor)

{blogTitle : blog.title,
bl ogbj ect: bl og
}

Passing data to the view

You can pass arbitary objects to the view, using $t hi s->vi ew
>assign(#ldentifierString, #QObject) from within the controller. See the above paragraphs about
Object Accessors for details how to use the passed data.

Layouts

In almost all web applications, there are many similarities between each page. Usually, there are common templates
or menu structures which will not change for many pages.

To make this possible in Fluid, we created a layout system, which we will introduce in this section.

Writing a layout

Every layoutisplacedintheResour ces/ Pri vat e/ Layout s directory, and hasthefileending. ht ni . A layout
isanormal Fluid template file, except there are some parts where the actual content of the target page should be
inserted.

4Actually, it should be the same. If not, please tell us!

User Manud

Example 2.3. An example layout

{nanespace f3=F3\FIl ui d\ Vi ewHel per s}

<htm >

<head><titl e>My fancy web application</title></head>
<body>

<div id="nenu">... nmenu goes here ...</div>

<div id="content">
<f 3:render section="content" />
</ div>
</ body>
</htm >

With this tag, a section from the target template is rendered.

Using a layout
Using alayout involves two steps:

» Declarewhichlayouttouse: <f 3: | ayout nane="..." /> canbewritten anywhere on the page (though we
suggest to write it on top, right after the namespace declaration) - the given name references the layout.

 Provide the content for all sections used by the layout using the <f 3: secti on>. .. </f 3: secti on> tag:
<f 3: section nane="content">...</f3:section>

For the above layout, aminimal template would look like the following:

Example 2.4. A template for the above layout

{namespace f 3=F3\Fl ui d\ Vi ewHel per s}
<f 3:1ayout name="exanple.htm" />

<f 3: secti on nane="content">

This HTML here will be outputted to inside the |ayout
</ f3:section>

Writing your own View Helper

Aswe have seen before, all output logic residesin View Helpers. Thisincludes the standard control flow operators
such asi f/ el se, HTML forms, and much more. This is the concept which makes Fluid extremely versatile and
extensible.

If you want to create a view helper which you can call from your template (as a tag), you just write a plain PHP
class which needs to inherit from F3\ Fl ui d\ Cor e\ Abstract Vi ewHel per (or its subclasses). You need to
implement at least two methods to write a view helper:

e initializeArguments(): Insidethis method, you need to register al the arguments you expect the view
helper to use.

* render () : Render the view helper and return the result (usually as string).

Initializing arguments

As previously mentioned, initializing arguments takes placeinsidethei ni ti al i zeAr gunment s() method. Call
$t hi s->regi ster Argunent (.. .) oncefor each argument.

See the section about the TagBasedVi ewHel per for some more possibilities.

User Manud

Rendering the View Helper

We refresh what we have learned so far: When a user writes something like <bl og: di spl ayNews /> inside
a template (and has imported the "blog" namespace to F3\ Bl og\ Vi ewHel pers), Fluid will automatically
instanciate the class F3\ Bl og\ Vi ewHel per s\ Di spl ayNewsVi ewHel per, and invoke the r ender ()
method on it.

Thisr ender () method should return the rendered content as string.
Y ou have the following possibilities to access the environment when rendering your view helper:

e $t hi s->argunent s is a read-only associative array where you will find the values for al arguments you
registered previougly.

e $t hi s->render Chi | dren() renderseverything between the opening and closing tag of the view helper and
returns the rendered result (as string).

* $t hi s->vari abl eCont ai ner isan instance of F3\ Fl ui d\ Cor e\ Vari abl eCont ai ner, with which
you have accessto al variables currently available in the template.

Additionally, you can add variables to the container with $t hi s->vari abl eCont ai ner -
>add($i dentifier, $val ue), butyouhavetomake surethat you remove every variable you added again!
Thisis asecurity measure against side-effects.

It is also not possible to add a variable to the VariableContainer if a variable of the same name already exists -
again to prevent side effects and scope problems.

Now, we will look at an example: How to write aview helper giving usthe f or each functionality of PHP.S

SThis view helper is aready available in the standard library as <f 3: f or >. . </ f 3: f or >. We 4till use it as example here, as it is quite simple and shows
many possibilities.

User Manud

Example 2.5. Implementing a loop
A loop could be called within the template in the following way:

<f3: for each="{bl ogPosts}" as="bl ogPost" >
<h2>{bl ogPost . titl e} </ h2>
</f3:for>

So, in words, what should the loop do?

It needs two arguments:

» each: Will be set to some object6 which can beiterated over.

 as: The name of avariable which will contain the current element being iterated over
It then should do the following (in pseudocode):

foreach ($each as $3as) {
/'l render everything between opening and cl osing tag

}

Implementing thisisfairly straightforward, as you will see right now:

public function render() {
$out = "'";
foreach ($this->argunments['each'] as $singleEl enent) {
$t hi s->vari abl eCont ai ner - >add($t hi s- >argunents[' as'], $singl ekl ement);
$out .= $this->renderChildren();
$t hi s->vari abl eCont ai ner - >r enove($t hi s->argunents['as']);
}

return $out;

}

The above example demonstrates how we add a variable, render all children (everything between the opening and
closing tag), and remove the variable again to prevent side-effects.

Sometimes, the above possibilities to interact with the environment are not enough - that is where facets come into
play.

TagBasedViewHelper

Many view helpers output an HTML tag - for example<f 3: 1 ink ...> out puts atag.
There are many view helpers which work that way.

Very often, you want to add a CSS class or atarget attribute to an tag. This often leads to
repetitive code like below. (Don't ook at the code too thoroughly, it should just demonstrate the boring and repetitive
task one would have without the TagBasedViewHel per).

cl ass Li nkVi enHel per ext ends \ F3\Fl ui d\ Cor e\ Abstract Vi ewHel per {
public function initializeArgunments() {
$t hi s->regi sterArgunent (' class', 'string', 'CSS class to add to the link');

$this->registerArgunent ('target', 'string', 'Target for the link');
and nore ...
}
public function render() {
$output = '<a href="..."";
if ($this->argunents['class']) {
$output .= "' class="' . $this->argunents['class'] . '"";
}

if ($this->argunents['target']) {

User Manud

$out put . = target="' . S$this->argunments['target'] . '"';
}
$out put .= "'>';
and nore ...
return $out put;
}
}

Now, the TagBasedViewHel per introduces two more methods you can useinsidei ni ti al i zeAr gunent s() :

* registerTagAttribute($nanme, $description, $required): Use this method to register an
attribute which should be directly added to the tag

e regi sterUniversal TagAttri but es(): If caled, registers the standard HTML attributes (class, id, dir,
lang, style, title).

It also adds a method called r ender TagAt t ri but es() which you can useinsider ender (), which will add
al thet agname="t agval ue" -style attributes to the tag.

With the above methods we get, the Li nkVi ewHel per from above can be condensed as follows:

cl ass Li nkVi enHel per ext ends \ F3\Fl ui d\ Cor e\ Abst ract Vi ewHel per {
public function initializeArgunments() {
$t hi s->regi st erUni versal TagAttri butes();
and nore ...
}
public function render() ({
$output = 'renderTagAttributes() . '>";
and nore ...
return $out put;
}
}

Additionally, we now already have support for all universal HTML attributes.

You might now think that the building blocks are ready, but there is one more nice thing to add:
addi t i onal TagAr gunent s! Read about it in the next section.

additionalArguments

Sometimes, you need some HTML attributes which are not part of the standard. As an example: if you use the
Dojo JavaScript framework, using these non-standard attributes makeslife alot eas er.’We think that the templating
framework should not constrain the user in hispossibilities- thus, it should be possibleto add custom HTML attributes
aswell, if they are needed (People who have already worked with JSP know that it can be difficult to archive this).
Our solution looks as follows:

Every view helper which inherits from TagBasedVi ewHel per has a special property called
addi t i onal Ar gunent s which allows you to add arbitary HTML attributes to the tag.

addi t i onal Ar gunent s should be an associative array, where the key is the name of the HTML attribute.

If the link tag from above needed a new attribute called f adeDur at i on, which is not part of HTML, you could
do that asfollows:

<f3:link ... additional Argunment s="{fadeDuration : 800}">Link with fadeDuration set

"There are always some religious discussions whether to allow non-standard attributes or not. People being against it argue that it "pollutes’ HTML, and makes
it not validate anymore. More pragmatic people see some benefits to custom attributes in some contexts: If you use JavaScript to evaluate them, they will be
ignored by the rendering engine if JavaScript is switched off, and can enable special behavior when JavaScript is turned on. Thus, they can make it easy to
provide degradable interfaces.

(Before bashing Dojo now: Of course you do not need the additional HTML arguments, but they make work with it alot more comfortabl€)

User Manud

This attribute isavailable in al tags that inherit from F3\ FI ui d\ Cor e\ TagBasedVi ewHel per.

TODO: Rename to additional Attributes??

Facets

The possihilities you get when you base your view helper on F3\ FI ui d\ Cor e\ Abst r act Vi ewHel per should
be enough for most use cases - however, there are some cases when the view helper needsto interact in aspecial way
with its surroundings - an example is the "if/else" view helper group.

If aview helper needs to know more about its surroundings, it has to implement a certain facet. Facets are plain
PHP interfaces.

SubNodeAccess Facet

Sometimes, aview helper needs direct access to its child nodes - as it does not want to render all of its children, but
only asubset. For thisto work the SubNodeAccessl nt er f ace has been introduced.

Let'stake if/then/el se as an example and start with two examples how this view helper is supposed to work:

<f3:if condition="...">
This text should only be rendered if the condition evaluates to TRUE
</[f3:if>

This above case is the most ssmple case. However, we want to support if/else as well:

<f3:if condition="...">
<f3:then>lf condition evaluated to TRUE, "then" should be rendered</f3:then>
<f3:else>f condition evaluated to FALSE, "el se" shoul d be rendered</f3: el se>
</[f3:if>

To implement the functionality of the<f 3: i f > view helper, astandard $t hi s- >r ender Chi | dr en() will not
be sufficent, asthei f -Tag hasno control whether the<f 3: t hen> or <f 3: el se>isrendered. Thus, the<f 3: i f >
tag needs more information about its environment, namely it needs access to its subnodesin the syntax tree.

To make this work, the <f3:if>tag implements the F3\Fl uid\Core\Facets
\ SubNodeAccessl nt er f ace. Now, the method set Chi | dren(array $chi | dNodes) (defined in the
interface) will be called before the r ender () method is invoked. Thus, the view helper has al of its subnodes

directly available in the r ender () method and can decide which subnodes it will render based on arbitary
conditions.

PostParse Facet

Standard View Helper Library

Should be autogenerated from the tags.

10

Chapter 3. Software Design

This chapter will explain some of the inner workings of Fluid. It is meant for people who want to help developing
Fluid, and understand the inner workings of it.

Design Decisions

Fluid was born in the context of FLOW3, but from the beginning, we saw the needs for such atemplating systemin
other contexts - namely TY PO3 v4, or stand-alone usage. That's why the core design of Fluid reflects this thinking.

We are using alayered architecture for Fluid, shown below:

Standard View TemplateView
Helpers
BEER3 Core

Fluid Core consists of the parts which do not change depending on the environment, such as the template parser.

The upper layer, consisting of the Standard View Helpers and the TemplateView, are currently FL OW3-specific, but
there will be separate layers for different contexts (like TY PO3 v4) which provide standard view hel pers adjusted to
the different platforms, different Fluid initialization code, etc.

The Core

Fluid Core consists of the following components:

» The TemplateParser, which takes atemplate file and builds up a syntax tree fromit.
e The Syntax Tree Elements (which have logic inside them as well)

» The AbstractViewHel per, being the base class for al view helpers.

Rendering a template always involves two steps:

e Cadl thepar se method inthe Tenpl at ePar ser class, which will return a SyntaxTree. This Syntax Tree will
be cached in the future.

e The SyntaxTree is implemented using a Composite design pattern, with all syntax tree nodes extending
\ F3\ Fl ui d\ Cor e\ Synt axTr ee\ Abst r act Node.

e Cdl the render (\ F3\ Fl ui d\ Cor e\ Vari abl eCont ai ner $vari abl eCont ai ner) method. This
method needsaVar i abl eCont ai ner asargument - this means all bound variables which should be rendered.

» Theresult of the render() method is the output string.

The upper layers for FLOWS3

11

Chapter 4. Lorem Ipsum

» Technical information; Installation, Reference of TypoScript, configuration options on system level, how to extend
it, the technical details, how to debug it.

 Language should be technical, assuming developer knowledge of FLOW3. Small examples/visuals are always
encouraged.

 Target group: Developers

12

Chapter 5. Lorem ipsum

A full point-a-to-b-to-c walk-through of an application of the package. Include screenshots.

13

