
FLOW3
Robert Lemke

Karsten Dambekalns

FLOW3
Robert Lemke

Karsten Dambekalns

Copyright © 2007, 2008, 2009 Robert Lemke, Karsten Dambekalns

Abstract

FLOW3 is a modern application framework for enterprise-grade PHP applications. This reference

describes FLOW3's main features.

iii

Table of Contents
1. Introduction .. 1

1. Overview ... 1

2. FLOW3 Bootstrap .. 3

1. Application Context .. 3

2. Boot Sequence .. 3

3. Packages ... 4

1. Package Locations ... 4

1.1. Global and Local Packages .. 4

1.2. Additional Package Locations ... 5

1.3. Loading Order ... 5

2. Package Directory Layout ... 5

3. Package Keys .. 6

4. Importing and Installing Packages ... 7

5. Package Manager .. 7

6. Creating a New Package .. 7

7. Package Meta Information .. 7

4. Object Framework .. 9

1. Creating Objects .. 9

1.1. Object Scopes ... 9

1.2. Creating Prototypes ... 10

1.3. Retrieving Singletons ... 11

1.4. Passing constructor arguments ... 11

1.5. Lifecycle methods .. 13

2. Object Registration and API .. 14

2.1. Object Framework API ... 14

2.2. Object names and types .. 14

3. Object dependencies .. 15

3.1. Dependency Injection ... 15

3.2. Required and Optional Dependencies ... 20

3.3. Dependency Resolution ... 21

4. Configuring objects ... 21

4.1. Configuration Sources .. 21

4.2. Overriding Object Implementations ... 23

4.3. Configuring Injection .. 24

4.4. Custom Factories .. 27

4.5. Name of Lifecycle Methods .. 28

5. Configuration Framework .. 29

1. Configuration Files .. 29

1.1. File Locations .. 29

2. Defining Configuration .. 30

2.1. Configuration Formats .. 30

2.2. YAML .. 30

2.3. PHP .. 30

2.4. Constants (special case) .. 32

iv

3. Accessing Configuration ... 33

3.1. Working with Settings .. 33

3.2. Manually Retrieving Settings .. 34

3.3. Working with other configuration ... 34

6. Resource Manager ... 35

7. MVC Framework .. 36

1. Introduction .. 36

1.1. Model-View-Controller .. 36

1.2. Other Patterns Used .. 36

1.3. Hello World! .. 37

1.4. Recommended File Structure ... 38

1.5. From the URI to the view ... 38

2. Request and Response .. 39

2.1. Request Processing Overview .. 39

2.2. Request Handler .. 40

2.3. Request Builder ... 40

2.4. Request Processors ... 40

2.5. Request Dispatcher ... 40

2.6. Request Types .. 40

3. Controller ... 41

3.1. Action Controller .. 41

3.2. Other Controllers ... 41

4. View .. 42

4.1. Template View .. 42

4.2. Special Views .. 42

5. Helpers .. 42

6. Model .. 42

7. Routing .. 42

8. CLI request handling .. 42

8. Cache Framework .. 44

9. Error and Exception Handling ... 45

10. AOP Framework ... 46

1. Introduction .. 46

1.1. AOP concepts and terminology .. 46

1.2. FLOW3 AOP concepts ... 48

1.3. Implementation overview .. 48

2. Aspects .. 49

3. Pointcuts .. 49

3.1. Pointcut expressions .. 50

3.2. Pointcut designators .. 50

3.3. Combining pointcut expressions ... 52

4. Declaring advice ... 53

4.1. Before advice .. 54

4.2. After returning advice ... 54

4.3. After throwing advice ... 54

4.4. After advice ... 55

v

4.5. Around advice ... 55

5. Implementing advice ... 55

5.1. Accessing join points ... 55

5.2. Advice chains .. 55

5.3. Examples .. 56

6. Introductions .. 58

6.1. Declaring introductions ... 58

7. Implementation details .. 59

7.1. AOP proxy mechanism .. 59

11. Persistence Framework ... 61

1. Introductory Example .. 61

2. On the priciples of DDD ... 63

3. Persistence-related annotations ... 63

4. Inside the Persistence Framework ... 63

4.1. Persisting a domain object ... 64

4.2. Querying the storage backend .. 64

A. Coding Guidelines .. 66

1. Code formatting and layout ... 66

1.1. General considerations .. 66

1.2. Indentation and line formatting .. 67

1.3. Naming ... 68

1.4. PHP code formatting .. 72

2. Documentation ... 73

2.1. Documentation blocks .. 73

2.2. Documentation tags ... 76

3. Coding ... 77

3.1. Overview ... 77

3.2. General PHP best practices ... 77

3.3. Error handling and exceptions .. 78

3.4. Cross platform issues .. 78

vi

List of Figures
7.1. Model-View-Controller Pattern .. 36

7.2. Example of a Web Request-Response Workflow ... 39

10.1. Control flow of an advice chain ... 56

10.2. Proxy building process ... 60

11.1. The objects of the Blog domain model .. 61

11.2. Object persistence process .. 64

11.3. Object querying and reconstitution process ... 65

vii

List of Tables
4.1. Supported scopes ... 9

11.1. Persistence-related code annotations .. 63

viii

List of Examples
3.1. Package.xml .. 8

4.1. Retrieving the Object Factory through dependency injection 11

4.2. A simple address book .. 12

4.3. Passing constructor arguments ... 12

4.4. Sample class with lifecycle methods ... 14

4.5. A simple example for Constructor Injection .. 16

4.6. Objects.yaml file for Constructor Injection .. 16

4.7. A simple example for Setter Injection .. 17

4.8. Objects.yaml file for Setter Injection .. 17

4.9. The preferred way of Setter Injection, using an inject method 17

4.10. Example for Property Injection .. 19

4.11. Example for the magic injectSettings method ... 20

4.12. Marking a setter-injected dependency as optional .. 20

4.13. Sample Objects.yaml file .. 22

4.14. Sample Objects.php file ... 22

4.15. Sample scope annotation ... 23

4.16. A simple Greeter class ... 23

4.17. Code using the object F3_MyPackage_Greeter ... 23

4.18. Objects.yaml file for object replacement .. 24

4.19. The Greeter object type ... 24

4.20. Code using the object type F3\MyPackage\GreeterInterface 24

4.21. Objects.yaml file for object type definition .. 24

4.22. Sample class for Constructor Injection .. 25

4.23. Sample configuration for Constructor Injection ... 25

4.24. Sample class for Setter Injection .. 26

4.25. Sample configuration for Setter Injection ... 26

4.26. Injecting an object specified in the settings .. 26

4.27. Example Settings.yaml of MyPackage ... 26

4.28. Nesting object configuration ... 27

4.29. Turning off autowiring support in Objects.yaml ... 27

4.30. Sample configuration for a Custom Factory ... 27

4.31. YAML configuration for a Custom Factory with default arguments 28

4.32. PHP code using the custom factory .. 28

4.33. Objects.yaml configuration of the initialization and shutdown method 28

5.1. Example for a package-level Settings.yaml ... 30

5.2. Example for a package-level Settings.php ... 31

5.3. Settings declaration using the object and the array syntax 31

5.4. Settings declaration with the object syntax and virtual setters 32

5.5. Example for using specialClassNameAndPaths ... 32

5.6. Example for using specialClassNameAndPaths ... 33

5.7. Settings Injection ... 33

5.8. Retrieving settings ... 34

7.1. Hello World! controller .. 37

7.2. Hello World! view .. 37

ix

7.3. Improved Hello World! controller ... 38

7.4. Sample file structure .. 38

7.5. Some FLOW3 CLI command specifications ... 42

7.6. Giving options to FLOW3 CLI requests ... 43

7.7. Some FLOW3 CLI commands .. 43

10.1. Declaration of an aspect .. 49

10.2. Declaration of a named pointcut ... 50

10.3. method() pointcut designator .. 51

10.4. class() pointcut designator .. 51

10.5. within() pointcut designator ... 51

10.6. classTaggedWith() pointcut designator .. 52

10.7. methodTaggedWith() pointcut designator ... 52

10.8. setting() pointcut designator ... 52

10.9. filter() pointcut designator ... 52

10.10. Combining pointcut expressions .. 53

10.11. Declaration of a before advice .. 54

10.12. Declaration of an after returning advice ... 54

10.13. Declaration of an after throwing advice .. 54

10.14. Declaration of an after advice ... 55

10.15. Declaration of an around advice ... 55

10.16. Simple logging with aspects ... 57

10.17. Implementation of an around advice .. 58

10.18. Declaring introductions ... 59

11.1. The Blog's addPost() method ... 61

11.2. Persistence-related annotations in the Blog class ... 62

11.3. Code of a simple BlogRepository .. 62

A.1. The FLOW3 standard file header ... 67

A.2. Correct use of tabs and spaces ... 67

A.3. Correct naming of classes ... 69

A.4. Incorrect naming of classes ... 69

A.5. Correct naming of interfaces .. 69

A.6. Incorrect naming of interfaces .. 69

A.7. Correct naming of exceptions ... 70

A.8. Correct naming of methods .. 70

A.9. Correct naming of variables ... 70

A.10. Incorrect naming of variables ... 70

A.11. Correct naming of constants .. 71

A.12. File naming in FLOW3 ... 71

A.13. String literals ... 72

A.14. String literals enclosed by double quotes .. 72

A.15. Variable substitution .. 72

A.16. Concatenated strings ... 72

A.17. Multi-line strings .. 72

A.18. Classes ... 72

A.19. if statements ... 73

A.20. Standard file level documentation block .. 74

x

A.21. Suggested configuration for Subversion in ~/.subversion/config 74

A.22. Standard class documentation block ... 74

A.23. Standard interface documentation block .. 75

A.24. Standard exception documentation block .. 75

A.25. Standard variable documentation block ... 75

A.26. Standard method documentation block ... 76

A.27. Encoding statement for .php files .. 77

A.28. Bad coding smell: Comments ... 78

A.29. Smells better! .. 78

1

Chapter 1. Introduction
FLOW3 is a PHP-based application framework. It is especially well-suited for enterprise-

grade applications and explicitly supports Domain-Driven Design, a powerful software

design philosophy. Convention over configuration, Test-Driven Development, Continuous

Integration and an easy-to-read source code are other important principles we follow for the

development of FLOW3.

Although we created FLOW3 as the foundation for the TYPO3 Content Management System,

its approach is general enough to be useful as a basis for any other PHP application. We're

happy to share the FLOW3 framework with the whole PHP community and are looking

forward to the hundreds of new features and enhancements contributed as packages by

other enthusiastic developers. In fact most of the packages which will be developed for the

TYPO3 CMS can be used in any other FLOW3-based application. In essence this reflects

the vision of the TYPO3 project: "Inspiring People to Share".

This reference describes all features of FLOW3 and provides you with in-depth information.

If you'd like to get a feeling for FLOW3 and get started quickly, we suggest that you try out

our Getting Started tutorial first.

Note
Please note that FLOW3 is still under heavy development. Although we hope

that the documentation is at least accurate and up to date, it is by no means

complete and most likely not proof-read. If you find errors or would like to help us

improving the documentation, we're happy to hear from you on our mailing list!

1. Overview
The FLOW3 framework is composed of the following submodules:

• The FLOW3 bootstrap takes care of configuring and initializing the whole framework.

• The Package Manager allows you to download, install, configure and uninstall packages.

• The Object Manager is in charge of building, caching and combining objects.

• The Configuration Framework reads and cascades various kinds of configuration from

different sources and provides access to it.

• The Resource Manager contains functions for providing, caching, securing and retrieving

resources.

• The MVC Framework takes care of requests and responses and provides you with a

powerful, easy-to use Model-View-Controller implementation.

• The Cache framework provides different kinds of caches with can be combined with a

selection of cache backends.

• The Error module handles errors and exceptions and provides utility classes for this

purpose.

• The Log module provides simple but powerful means to log any kind of event or signal into

different types of backends.

• The Signal Slot module implements the event-driven concept of signals and slots through

AOP aspects.

2

• The Validation module provides a validation and filtering framework with built-in rules as

well as support for custom validation of any object.

• The Property module implements the concept of property editors and is used for setting

and retrieving object properties.

• The Reflection API complements PHP's built-in reflection support by advanced annotation

handling and a cached reflection service.

• The AOP Framework enables you to use the powerful techniques of Aspect Oriented

Programming.

• The Persistence module allows you to transparently persist your objects following

principles of Domain Driven Design.

• The Security Framework enforces security policies and provides an API for managing

those.

• The Session Framework takes care of session handling and storing session information

in different backends

• The Locale service manages languages and other regional settings and makes them

accessible to other packages and FLOW3 sub packages.

• The Utility module is a library of useful general-purpose functions for file handling,

algorithms, environment abstraction and more.

If you are overwhelmed by the amount of information in this reference, just keep in mind that

you don't need to know all of it to write your own FLOW3 packages. You can always come

back and look up a specific topic once you need to know about it - that's what references are

for. But even if you don't need to know everything, we recommend that you get familiar with

the concepts of each module and read the whole manual. This way you make sure that you

don't miss any of the great features FLOW3 provides and hopefully feel inspired to produce

clean and easy-maintainable code.

Tip
A strong coffee helps most people over even the longest documentation.

3

Chapter 2. FLOW3 Bootstrap
Note
This section is work in progress and only contains some bullet points for the later

documentation.

1. Application Context
The FLOW3 Framework can be launched in different application contexts. An application

context basically is a set of configuration which has been defined for a certain context.

By default, FLOW3 provides configuration for the Production, Development, Testing,

and Staging context. More contexts may be defined by just adding configuration for it

accordingly (refer to the Configuration section to learn more about configuration).

The FLOW3 boot strap (i.e. the class \F3\FLOW3\FLOW3) is always instantiated in a

single application context. By default (when calling the index.php file) the context is

Production. In the standard distribution a file index_dev.php exists which runs FLOW3

in the Development context.

2. Boot Sequence
At the time of this writing, the sequence in which the various modules of FLOW3 are initialized

is hardcoded into the bootstrap. The solution we aim for is, however, a more flexible and

cleaner approach which is allows the modules to register themselves for initialization.

4

Chapter 3. Packages
FLOW3 is a package-based system. In fact, FLOW3 itself is just a package as well - but

obviously an important one. Packages act as a container for different matters: Most of them

contain PHP code which adds certain functionality, others only contain documentation and

yet other packages consist of templates, images or other resources. The TYPO3 project [???]

hosts a package repository which acts as a convenient hub for interchanging FLOW3 based

packages with other community members.

Note

At the time of this writing the package repository for FLOW3 is still in the planning

phase.

1. Package Locations
1.1. Global and Local Packages

FLOW3 packages are located in a sub folder of the Packages directory. A typical application

(such as TYPO3 for example) will use the core packages which are bundled with FLOW3

and use additional packages which are specific to the application. The core packages are

kept in a directory called Global while the application specific packages reside in the Local

directory:

Configuration/

The global configuration folder

Data/

The various data folders

Packages/

Global/

The Global directory contains packages of the FLOW3 distribution (just examples):

FLOW3/

The FLOW3 package

Fluid/

The Fluid package (Template Engine)

Local/

The Local directory contains your own / application specific packages:

TYPO3/

For example the TYPO3 package

Coffee/

Or the coffee package

The reason for separating packages into Global / Local directories is that the core packages

residing in Global/ can reside in a different, shared location and be symlinked from the

application using it. Just delete the Global directory and replace it with a symlink pointing

to the Packages/Global/ directory of the FLOW3 distribution.

???
???

5

We recommend that you keep a version of the FLOW3 distribution in /var/lib/flow3/

flow3-x.y.z/ and flag all its content read-only for the web server's user. By doing that

you can assure that no FLOW3 package (or other PHP script) can tamper with the FLOW3

package and its built-in security framework.

1.2. Additional Package Locations
Apart from the Local and Global packages you may define your very own additional

package locations by just creating another directory or symlink in the application's Packages

directory.

1.3. Loading Order
If multiple package locations exist, the Package Manager will assure that packages from the

location FLOW3 itself is located will be loaded first. The loading order of all other package

locations is undefined.

2. Package Directory Layout
The FLOW3 package directory structure follows a certain convention which has the

advantage that you don't need to care about any package-related configuration. If you put

your files into the right directories, everything will just work.

The suggested directory layout of a FLOW3 package is as follows:

[PackageName]

Classes

This directory contains the actual source code for the package. Package authors are

free to add (only!) class or interface files directly to this directory or add subdirectories

to organize the content if necessary. All classes or interfaces below this directory are

handled by the autoloading mechanism and will be registered at the object manager

automatically (and will thus be considered "registered objects").

Configuration

All kinds of configuration which are delivered with the package reside in this directory.

The configuration files are immutable and must not be changed by the user or

administrator. The most prominent configuration files are the Objects.yaml file

which may be used to configure the package's objects and the Settings.yaml file

which contains general user-level settings.

Documentation

Holds the package documentation. The English manual must be located in a

subdirectory called Manual/en/. The format for manuals is DocBook [???]. Please

refer to the Documentor's Guide for more details about the directories and files within

this directory.

Meta

A folder which provides some meta information about the package.

Package.xml

This mandatory file contains some basic information about the package, such

as title, description, author, constraints, version number and more. You should

take great care to keep this information updated.

???
???

6

Resources

Contains static resources the package needs, such as library code, template files,

graphics, ... In general, there is a distinction between public and private resources.

While public resources will be mirrored into FLOW3's Public directory by the

Resource Manager (and therefore become accessible from the web) all resources

in the Private directory remain protected.

Private

Contains private resources for the package.

Public

Contains public resources for the package.

Although it is up to the package author to name the directories, we suggest the

following conventions for directories below Private and Public:

Media

This directory holds images, PDF, Flash, CSS and other files that will be

delivered to the client directly without further processing.

Templates

Template files used by the package should go here. If a user wants to modify the

template it will end up elsewhere and should be pointed to by some configuration

setting.

PHP

Should hold any PHP code that is an external library which should not be handled

by the object manager (at least not by default), is of procedural nature or doesn't

belong into the classes directory for any other reason.

Java

Should hold any Java code needed by the package. Repeat and rinse for

Smalltalk, Modula, Pascal, ... ;)

More directories can be added as needed.

Tests

Holds the unit tests for the package. Test cases will be recognized by the Testing

package if they follow the required naming convention.

As already mentioned, all classes which are found in the Classes directory will be detected

and registered. However, this only works if you follow the naming rules equally for the class

name as well as the file name. An example for a valid class name is \F3\MyPackage

\Controller\DefaultController while the file containing this class would be named

DefaultController.php and is expected to be in a directory MyPackage/Classes/

Controller.

All details about naming files, classes, methods and variables correctly can be found in the

FLOW3 Coding Guidelines. You're highly encouraged to read (and follow) them.

3. Package Keys
Package keys are used to uniquely identify packages and provide them with a namespace

for different purposes. They save you from conflicts between packages which were provided

by different parties.

7

Any public package needs to have a unique package key which you need to register at

forge.typo3.org [http://typo3.org] prior to use. But even if you develop a package for private

use only, it's clever to register a package key for it.

4. Importing and Installing Packages
At this time the features for import and installation of packages have not been implemented.

The current behavior is that all directories which are found below the Packages folder are

assumed to be packages and are active by default. Just make sure that you created a

Package.xml file in the Meta directory of your package.

5. Package Manager
The Package Manager is in charge of downloading, installing, configuring and activating

packages and registers their objects and resources.

Note

In its current form, the package manager only provides the basic functionality

which is necessary to use packages and their objects. More advanced features

like installing or configuring packages are of course planned.

6. Creating a New Package
Just create the package folder and subdirectories manually and copy & adapt a

Package.xml file from one of the other packages. Apart from that no further steps are

necessary.

7. Package Meta Information
All packages need to provide some meta information to the package manager. This data is

stored in a file called Package.xml which resides in the Meta directory of a package. The

format of this file follows a RelaxNG schema which is available at http://typo3.org/ns/2008/

flow3/package/Package.rng.

Note

If you are working with Eclipse, you might want to install the DEV3 plug-in

[http://dev3.org] which - among other tools - provides you with a convenient

Package.xml editor

Here is an example of a valid Package.xml file:

http://typo3.org
http://typo3.org
http://typo3.org/ns/2008/flow3/package/Package.rng
http://typo3.org/ns/2008/flow3/package/Package.rng
http://dev3.org
http://dev3.org

8

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<package xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://typo3.org/ns/2008/flow3/package" version="1.0">
 <key>TestPackage</key>
 <title>Test Package</title>
 <description>Test to demonstrate the features of Package.xml</description>
 <version>0.0.1</version>
 <state>Alpha</state>
 <categories>
 <category>System</category>
 <category>Testing</category>
 </categories>
 <parties>
 <person role="LeadDeveloper">
 <name>David Brühlmeier</name>
 <email>typo3@bruehlmeier.com</email>
 </person>
 <person role="Maintainer">
 <name>John Smith</name>
 <email>john@smith.com</email>
 <organisation>Smith Ltd.</organisation>
 <repositoryUserName>jsmith</repositoryUserName>
 </person>
 <organisation role="Sponsor">
 <name>John Doe Co.</name>
 <email>info@johndoe.com</email>
 <website>www.johndoe.com</website>
 </organisation>
 </parties>
 <constraints>
 <depends>
 <package minVersion="1.0.0" maxVersion="1.9.9">FLOW3</package>
 <system type="PHP" minVersion="5.1.0" />
 <system type="PHPExtension">xml</system>
 <system type="PEAR" minVersion="1.5.1">XML_RPC</system>
 </depends>
 <conflicts>
 <system type="OperatingSystem">Windows_NT</system>
 </conflicts>
 <suggests>
 <system type="Memory">16M</system>
 </suggests>
 </constraints>

 <!-- The following elements are only used and generated by the repository -->
 <repository>
 <downloads>
 <total>3929</total>
 <thisVersion>444</thisVersion>
 </downloads>
 <uploads>
 <upload>
 <comment>Just a comment...</comment>
 <repositoryUserName>jsmith</repositoryUserName>
 <timestamp>2008-04-22T17:23:09Z</timestamp>
 </upload>
 <upload>
 <comment/>
 <repositoryUserName>jsmith</repositoryUserName>
 <timestamp>2008-04-19T03:54:13Z</timestamp>
 </upload>
 </uploads>
 </repository>
</package>

Example 3.1. Package.xml

9

Chapter 4. Object Framework
The lifecycle of objects are managed centrally by the object framework. It offers convenient

support for Dependency Injection and provides some additional features such as a caching

mechanism for objects. Because all packages are built on this foundation it is important to

understand the general concept of objects in FLOW3 and the container.

Tip
A very good start to understand the idea of Inversion of Control and Dependency

Injection is reading Martin Fowler's article [http://martinfowler.com/articles/

injection.html] on the topic.

1. Creating Objects
In simple, self-contained applications, creating objects is as simple as using the

new operator. However, as the program gets more complex, a developer is

confronted with solving dependencies to other objects, make classes configurable

(maybe through a factory method) and finally assure a certain scope for the object

(such as Singleton or Prototype). Howard Lewis Ship explained this circumstances

nicely in his blog [http://tapestryjava.blogspot.com/2004/08/dependency-injection-mirror-of-

garbage.html] (quite some time ago):

Once you start thinking in terms of large numbers of objects, and a whole lot

of just in time object creation and configuration, the question of how to create

a new object doesn't change (that's what new is for) ... but the questions

when and who become difficult to tackle. Especially when the when is very

dynamic, due to just-in-time instantiation, and the who is unknown, because

there are so many places a particular object may be used.

The Object Manager is responsible for object building and dependency resolution (we'll

discover shortly why dependency injection makes such a difference to your application

design). In order to fulfill its task, it is important that all objects are instantiated only through

the object framework.

1.1. Object Scopes
Objects live in a specific scope. The most commonly used are prototype and singleton:

Scope Description

singleton (default) The object instance is unique during one request - each injection by

the Object Manager or explicit call of getObject returns the same

instance. A request can be an HTTP request or a run initiated from

the command line.

prototype The object instance is not unique - each injection or call of the Object

Factory's create method returns a fresh instance.

sessiona The object instance is unique during the whole user session - each

injection or getObject call returns the same instance.

aNot yet implemented

Table 4.1. Supported scopes

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
http://tapestryjava.blogspot.com/2004/08/dependency-injection-mirror-of-garbage.html
http://tapestryjava.blogspot.com/2004/08/dependency-injection-mirror-of-garbage.html
http://tapestryjava.blogspot.com/2004/08/dependency-injection-mirror-of-garbage.html

10

In PHP, objects of the scope prototype are created with the new operator:

$myFreshObject = new \F3\MyPackage\MyClassName;

In contrast to Prototype, the Singleton design pattern ensures that only one instance of a

class exists at a time. In PHP the Singleton pattern is often implemented by providing a static

function (usually called getInstance), which returns a unique instance of the class:

/**
 * Implementation of the Singleton pattern
 */
class ASingletonClass {

 protected static $instance;

 static public function getInstance() {
 if (!is_object(self::$instance)) {
 self::$instance = $this;
 }
 return self::$instance;
 }
}

Although this way of implementing the singleton will possibly not conflict with the Object

Manager, it is counterproductive to the integrity of the system and might raise problems with

unit testing (sometimes Singleton is referred to as an Anti Pattern). The above examples are

not recommended for the use within FLOW3 applications.

The scope of an object is determined from its configuration (see also: Configuring Objects).

The recommended way to specify the scope is the @scope annotation:

namespace F3\MyPackage;

/**
 * A sample class
 *
 * @scope prototype
 */
class SomeClass {
}

Singleton is the default scope and is therefore assumed if no @scope annotation or other

configuration was found.

1.2. Creating Prototypes
The instantiation of classes must be handled by the object framework to assert full control

over the object lifecycle. In order to instantiate a class or retrieve an existing instance of a

class, you'll have to call an API function instead of using the new operator. To create a fresh

instance of an object just call the Object Factory's create method:

$myFreshObject = $objectFactory->create('F3\MyPackage\MyClassName');

The Object Factory (\F3\FLOW3\Object\FactoryInterface) itself is a Singleton and

can be acquired like any other object of that scope (see next section).

Analog to new it is possible to pass arguments a constructor of the class being instantiated

- they are simply passed as additional arguments to the create method:

$myFreshObject = $objectFactory->create('F3\MyPackage\MyClassName', ↩
 'first argument', $secondArgument, 42, $fourthArgument);

11

1.3. Retrieving Singletons
The Object Manager maintains a registry of all instantiated singletons and ensures that

only one instance of each class exists. The preferred way to retrieve a singleton object is

dependency injection:

namespace F3\MyPackage;

/**
 * A sample class
 */
class SampleClass {

 /**
 * @var \F3\FLOW3\Object\FactoryInterface
 */
 protected $objectFactory;

 /**
 * Constructor.
 * The Object Factory will automatically be passed (injected) by the object
 * framework on instantiating this class.
 *
 * @param \F3\FLOW3\Object\FactoryInterface $objectFactory The object factory
 */
 public function __construct(\F3\FLOW3\Object\FactoryInterface $objectFactory) {
 $this->objectFactory = $objectFactory;
 }
}

Example 4.1. Retrieving the Object Factory through dependency injection

Once the SampleClass is being instantiated, the object framework will automagically pass

a reference to the Object Factory (which is an object of scope singleton) as an argument to

the constructor. This kind of dependency injection is called Constructor Injection and will be

explained - together with other kinds of injection - in one of the later sections.

Although dependency injection is what you should strive for, it might happen that you need

to retrieve object instances directly. The ObjectManager provides methods for retrieving

object instances for these rare situations. First, you need an instance of the ObjectManager

itself, again by taking advantage of constructor injection:

public function __construct(\F3\FLOW3\Object\ManagerInterface $objectManager) {
 $this->objectManager = $objectManager;
}

To explicitly retrieve an object instance use the getObject() method:

$myObjectInstance = $objectManager->getObject('F3\MyPackage\MyClassName');

Like with the ObjectFactory's create method, it is possible to pass arguments to the

constructor of the object class just by adding them to the getObject() call. However

passing arguments to a Singleton object makes only sense on the first call when the instance

is actually created. On all consecutive calls the arguments are just ignored.

1.4. Passing constructor arguments
In most cases an object class will live in the Singleton scope and at most requires a

few dependencies passed to its constructor. However, there are times when it becomes

necessary to pass dynamic values as constructor arguments, especially when the object

12

represents an entity and its instances are not unique (Prototype scope). Consider the

following classes:

namespace F3\Address;

/**
 * A simple address book
 */
class AddressBook {

 protected $addresses = array();

 public __construct(\F3\iCal\iCalConnectorInterface $iCalConnector) {
 ...
 }

 public addAddress(\F3\Address\Address $address) {
 $this->addresses[] = $address;
 }
}

/**
 * An address
 *
 * @scope prototype
 */
class Address {

 public __construct($street, $zip, $town, $country) {
 ...
 }
}

Example 4.2. A simple address book

This is admittedly not the fanciest implementation of an address book, but it should

demonstrate two things:

• The class \F3\Address\AddressBook is supposed to be a Singleton and obviously

depends on a third object type \F3\iCal\iCalConnectorInterface which is possibly

solved by Dependency Injection (will be explained in a later section).

• The class \F3\Address\Address represents the address entity and its instances must

not be unique - we surely want more than one address. The Address object also expects

a few parameters passed to its constructor.

The following code demonstrates how this address book can be used and constructor

arguments are passed to the Address entity:

// Explicitly fetch a unique instance of the address book (but better use
// Dependency Injection ...):
$myAddressBook = $objectManager->getObject('F3\Address\AddressBook');

// Create two new addresses and add them to the address book:
$newAddress = $objectFactory->create('F3\Address\Address', 'Tryggevældevej', ↩
 '2720', 'København', 'DK');
$myAddresbook->addAddress($newAddress);

$newAddress = $objectFactory->create('F3\Address\Address', 'An den Brodbänken', ↩
 '21335', 'Lüneburg', 'DE');
$myAddresbook->addAddress($newAddress);

Example 4.3. Passing constructor arguments

13

1.5. Lifecycle methods
The lifecycle of an object goes through different stages. It boils down to the following order:

1. Solve dependencies for constructor injection

2. Create an instance of the object class

3. Solve and inject dependencies for setter injection

4. Live a happy object-life and solve exciting tasks

5. Dispose the object instance

Your object might want to take some action after certain of the above steps. Whenever one

of the following methods exists in the object class, it will be invoked after the related lifecycle

step:

1. No action after this step

2. During instantiation the function __construct() is called (by PHP itself), dependencies

are passed to the constructor arguments

3. After all dependencies have been injected (through constructor- or setter injection) the

object's initialization method is called. The name of this method is configurable and it is

called regardless of whether any dependencies have been injected or not

4. During the life of an object no special lifecycle methods are called

5. Before destruction of the object, the function shutdownObject is called. The name of

this method is also configurable.

6. On disposal, the function __destruct() is called (by PHP itself)

We strongly recommend that you use the shutdownObject method instead of PHP's

__destruct method for shutting down your object. If you used __destruct it might happen

that important parts of the framework are already unavailable. Here's a simple example with

all kinds of lifecycle methods:

14

class Foo {

 protected $bar;
 protected $identifier = 'Untitled';

 public function __construct() {
 echo ('Constructing object ...');
 }

 public function injectBar(\F3\MyPackage\BarInterface $bar) {
 $this->bar = $bar;
 }

 public function setIdentifier($identifier) {
 $this->identifier = $identifier;
 }

 public function intializeObject() {
 echo ('Initializing object ...');
 }

 public function shutdownObject() {
 echo ('Shutting down object ...')
 }

 public function __destruct() {
 echo ('Destructing object ...');
 }
}

Constructing object ...
Initializing object ...
Shutting down object ...
Destructing object ...

Example 4.4. Sample class with lifecycle methods

2. Object Registration and API
2.1. Object Framework API

The object framework provides a lean API for registering, configuring and retrieving instances

of objects. Some of the methods provided are exclusively used within the FLOW3 package

or in unit tests and should possibly not be used elsewhere. By offering Dependency Injection,

the object framework helps you to avoid creating rigid interdependencies between objects

and allows for writing code which is hardly or even not at all aware of the framework it is

working in. Calls to the Object Manager should therefore be the exception.

For a list of available methods please refer to the API documentation of the interface

F3\FLOW3\Object\ManagerInterface.

2.2. Object names and types
By default, the name of an object is identical to the PHP class which contains the object's

code. A class called F3\MyPackage\MyImplementation will be automatically available

as an object with the exact same name. Every part of the system which asks for an object

with a certain name will therefore - by default - get an instance of the class of that name. It

is possible to replace the original implementation of an object by another one. In that case

the class name of the new implementation will naturally differ from the object name which

stays the same at all times. In these cases it is important to be aware of the fine difference

between an object name and a class name.

15

If the object name equals the name of a PHP interface, it is often referred to as a object

type. An interface called F3\MyPackage\MyInterface will be available as an object of

the same name as long as there exists one class implementing that interface. Object types

can be created and retrieved like regular objects:

$objectTypeInstance = $objectFactory->create('F3\MyPackage\MyInterface');

If exactly one class implements the F3\SomePackage\SomeInterfaceName interface,

$otherObjectInstance will contain an instance of that class. If zero or more than one

class implements the interface, the Object Factory will throw an exception.

The advantage of using object types instead of regular object names is the increased

flexibility: By referring to interfaces rather than classes it is possible to write code

depending on other classes without the need to be specific about the implementation. Which

implementation will actually be used can be set at a later point in time by simple means of

configuration.

3. Object dependencies
The intention to base an application on a combination of packages and objects is to force a

clean separation of domains which are realized by dedicated objects. The less each object

knows about the internals of another object, the easier it is to modify or replace one of them,

which in turn makes the whole system flexible. In a perfect world, each of the objects could

be reused in a variety of contexts, for example independently from certain packages and

maybe even outside the FLOW3 framework.

3.1. Dependency Injection
An important prerequisite for reusable code is already met by encouraging encapsulation

through object orientation. However, the objects are still aware of their environment as they

need to actively collaborate with other objects and the framework itself: An authentication

object will need a logger for logging intrusion attempts and the code of a shop system

hopefully consists of more than just one class. Whenever an object refers to another directly,

it adds more complexity and removes flexibility by opening new interdependencies. It is very

difficult or even impossible to reuse such hardwired classes and it becomes a nightmare

testing them.

By introducing Dependency Injection, these interdependencies are minimized by inverting

the control over resolving the dependencies: Instead of asking for the instance of an

object actively, the depending object just gets one injected by the Object Manager. This

methodology is also referred to as the "Hollywood Principle [http://en.wikipedia.org/wiki/

Hollywood_Principle]": “Don't call us, we'll call you.”. It helps in the development of code with

loose coupling and high cohesion – or in short: It makes you a better programmer.

In the context of the previous example it means that the authentication object announces

that it needs a logger which implements a certain PHP interface (e.g. the F3\FLOW3\Log

\Logger\BackendInterface). The object itself has no control over what kind of logger

backend (file-logger, sms-logger, ...) it finally gets and it doesn't have to care about it anyway

as long as it matches the expected API. As soon as the authentication object is instantiated,

the object manager will resolve these dependencies, prepare an instance of a logger backend

and inject it to the authentication object.

http://en.wikipedia.org/wiki/Hollywood_Principle
http://en.wikipedia.org/wiki/Hollywood_Principle
http://en.wikipedia.org/wiki/Hollywood_Principle

16

Tip
An article [http://www.ddj.com/dept/java/184405016] by Jonathan Amsterdam

discusses the difference between creating an object and requesting one (i.e.

using new versus using dependency injection). It demonstrates why new should

be considered as a low-level tool and outlines issues with polymorphism. He

doesn't mention dependency injection though ...

Dependencies on other objects can be declared in the object's configuration (see section

about configuring objects) or they can be solved automatically (so called autowiring).

Generally there are two modes of dependency injection supported by FLOW3: Constructor

Injection and Setter Injection.

3.1.1. Constructor Injection
With constructor injection, the dependencies are passed as constructor arguments to the

depending object while it is instantiated. Here is an example of an object Foo which depends

on an object Bar:

namespace F3\MyPackage;

class Foo {

 protected $bar;

 public function __construct(\F3\MyPackage\BarInterface $bar) {
 $this->bar = $bar;
 }

 public function doSomething() {
 $this->bar->doSomethingElse();
 }
}

Example 4.5. A simple example for Constructor Injection

So far there's nothing special about this class, it just makes sure that an instance of a class

implementing the \F3\MyPackage\BarInterface is passed to the constructor. However,

this is already a quite flexible approach because the type of $bar can be determined from

outside by just passing one or the another implementation to the constructor.

Now the FLOW3 Object Manager does some magic: By a mechanism called Autowiring

all dependencies which were declared in a constructor will be injected automagically if the

constructor argument provides a type definition (i.e. \F3\MyPackage\BarInterface in

the above example). Autowiring is activated by default (but can be switched off), therefore

all you have to do is to write your constructor method.

The object framework can also be configured manually to inject a certain object or object

type. You'll have to do that either if you want to switch off autowiring or want to specify a

configuration which differs from would be done automatically.

F3\MyPackage\Foo:
 arguments:
 1: { object: F3\MyPackage\Bar }

Example 4.6. Objects.yaml file for Constructor Injection

http://www.ddj.com/dept/java/184405016
http://www.ddj.com/dept/java/184405016

17

The three lines above define that an object instance of \F3\MyPackage\Bar must

be passed to the first argument of the constructor when an instance of the object

F3\MyPackage\Foo is created.

3.1.2. Setter Injection
With setter injection, the dependencies are passed by calling setter methods of the depending

object right after it has been instantiated. Here is an example of the Foo class which depends

on a Bar object - this time with setter injection:

namespace F3\MyPackage;

class Foo {

 protected $bar;

 public function setBar(\F3\MyPackage\BarInterface $bar) {
 $this->bar = $bar;
 }

 public function doSomething() {
 $this->bar->doSomethingElse();
 }
}

Example 4.7. A simple example for Setter Injection

Analog to the constructor injection example, a BarInterface compatible object is injected

into the authentication object. In this case, however, the injection only takes place after

the class has been instantiated and a possible constructor method has been called. The

necessary configuration for the above example looks like this:

F3\MyPackage\Foo:
 properties:
 bar: { object: F3\MyPackage\BarInterface }

Example 4.8. Objects.yaml file for Setter Injection

Unlike constructor injection, setter injection like in the above example does not offer the

autowiring feature. All dependencies have to be declared explicitly in the object configuration.

To save you from writing large configuration files, FLOW3 supports a second type of setter

methods: By convention all methods whose name start with "inject" are considered as setters

for setter injection. For those methods no further configuration is necessary, dependencies

will be autowired (if autowiring is not disabled):

namespace F3\MyPackage;

class Foo {

 protected $bar;

 public function injectBar(\F3\MyPackage\BarInterface $bar) {
 $this->bar = $bar;
 }

 public function doSomething() {
 $this->bar->doSomethingElse();
 }
}

Example 4.9. The preferred way of Setter Injection, using an inject method

18

Note the new method name injectBar - for the above example no further configuration

is required (but possible). Using inject* methods is the preferred way for setter injection

in FLOW3.

Note

If both, a set* and a inject* method exist for the same property, the inject*

method has precedence.

Constructor- or Setter Injection?

The natural question which arises at this point is “Should I use constructor- or setter

injection?”. There is no answer across-the-board – it mainly depends on the situation

and your preferences. The authors of the Java-based Spring Framework [http://

www.springframework.org] for example prefer Setter Injection for its flexibility. The

more puristic developers of PicoContainer [www.picocontainer.org] strongly plead for

using Constructor Injection for its cleaner approach. Reasons speaking in favor of

constructor injections are:

• Constructor Injection makes a stronger dependency contract

• It enforces a determinate state of the depending object: using setter Injection, the

injected object is only available after the constructor has been called

However, there might be situations in which constructor injection is not possible or even

cumbersome:

• If an object has many dependencies and maybe even many optional dependencies,

setter injection is a better solution.

• Subclasses are not always in control over the arguments passed to the constructor

or might even be incapable of overriding the original constructor (FLOW3's action

controller is such a case). Then setter injection is your only chance to get

dependencies injected.

• Setter injection can be helpful to avoid circular dependencies between objects.

• Setters provide more flexibility to unit tests than a fixed set of constructor arguments

3.1.3. Property Injection
Setter injection is the academic, clean way to set dependencies from outside. However,

writing these setters can become quite tiresome if all they do is setting the property. For these

cases FLOW3 provides support for Property Injection:

http://www.springframework.org
http://www.springframework.org
http://www.springframework.org
www.picocontainer.org
www.picocontainer.org

19

namespace F3\MyPackage;

class Foo {

 /**
 * An instance of a BarInterface compatible object.
 *
 * @var \F3\MyPackage\BarInterface
 * @inject
 */
 protected $bar;

 public function doSomething() {
 $this->bar->doSomethingElse();
 }
}

Example 4.10. Example for Property Injection

You could say that property injection is the same like setter injection – just without the setter.

The @inject annotation tells the object framework that the property is supposed to be

injected and the @var annotation specifies the type. Note that property injection even works

(and should only be used) with protected properties. The Objects configuration for property

injection is identical to the setter injection configuration.

Note

If a setter method exists for the same property, it has precedence.

Setting properties directly, without a setter method, surely is convenient - but is it clean

enough? In general it is a bad idea to allow direct access to mutable properties because

you never know if at some point you need to take some action while a property is set. And

if thousands of users (or only five) use your API, it's hard to change your design decision in

favor of a setter method.

However, we don't consider injection methods as part of the public API. As you've seen,

FLOW3 takes care of all the object dependencies and the only other code working with

injection methods directly are unit tests. Therefore we consider it safe to say that you can

still switch back from property injection to setter injection without problems if it turns out that

you really need it.

3.1.4. Settings Injection
No, this headline is not misspelled. FLOW3 offers some convenient feature which allows

for automagically injecting the settings of the current package without the need to configure

the injection. If a class contains a method called injectSettings and autowiring is not

disabled for that object, the Object Builder will retrieve the settings of the package the object

belongs to and pass it to the injectSettings method.

20

namespace F3\MyPackage;

class Foo {

 protected $settings = array();

 public function injectSettings(array $settings) {
 $this->settings = $settings;
 }

 public function doSomething() {
 var_dump($this->settings);
 }
}

Example 4.11. Example for the magic injectSettings method

The doSomething method will output the settings of the MyPackage package.

3.2. Required and Optional Dependencies
All dependencies defined in a constructor are, by its nature, required. If a dependency can't

be solved by autowiring or by configuration, FLOW3's object builder will throw an exception.

Also autowired setter-injected dependencies are, by default, required. There is a way

to declare a setter-injected dependency as optional without the need to configure the

dependency in a Objects configuration file. If an optional dependency can't be solved, it

just won't be injected and it is the developer's responsibility to test for the availability of the

desired object. FLOW3 uses the @optional annotation for this purpose:

namespace F3\MyPackage;

/**
 * A very fooish class
 */
class Foo {

 /**
 * @var \F3\MyPackage\BarInterface
 */
 protected $bar;

 /**
 * Injects a bar-ish object
 *
 * @param \F3\MyPackage\BarInterface $bar a kind of Bar object
 * @return void
 * @optional
 */
 public function injectBar(\F3\MyPackage\BarInterface $bar) {
 $this->bar = $bar;
 }

 /**
 * A method which does something
 *
 * @return void
 */
 public function doSomething() {
 $this->bar->doSomethingElse();
 }
}

Example 4.12. Marking a setter-injected dependency as optional

21

Due to the @optional annotation, the injection of a Bar object is now no longer required.

If the object builder can't autowire an object for this injection method, it will now no longer

throw an exception.

3.3. Dependency Resolution
The dependencies between objects are only resolved during the instantiation process.

Whenever a new instance of an object class needs to be created, the object configuration is

checked for possible dependencies. If there is any, the required objects are built and only if all

dependencies could be resolved, the object class is finally instantiated and the dependency

injection takes place.

During the resolution of dependencies it might happen that circular dependencies occur. If

an object A requires an object B to be injected to its constructor and then again object B

requires a object A likewise passed as a constructor argument, none of the two classes can

be instantiated due to the mutual dependency. Although it is technically possible (albeit quite

complex) to solve this type of reference, FLOW3's policy is not to allow circular dependencies

at all. As a workaround you can use setter injection instead of Constructor Injection for either

one or both of the objects causing the trouble.

4. Configuring objects
The behavior of objects significantly depends on their configuration. During the initialization

process all classes found in the various Classes/ directories are registered as objects and

an initial configuration is prepared. In a second step, other configuration sources are queried

for additional configuration options. Definitions found at these sources are added to the base

configuration in the following order:

1. If they exist, the PackageName/Configuration/Objects.* will be included.

2. Additional configuration defined in the global Configuration/ directory is applied.

Currently there are three important situations in which you want to configure objects:

• Override one object implementation with another

• Set the active implementation for an object type

• Explicitly define and configure dependencies to other objects

4.1. Configuration Sources
As already mentioned, the configuration for each object is compiled from different sources.

The Objects.yaml file is the recommended format and is therefore used in most of the

examples. However, the names of the configuration options and their possible values are

identical to all configuration sources.

4.1.1. Objects.yaml
If a file named Objects.yaml exists in the Configuration directory of a package, it will

be included during the configuration process. The YAML file should stick to FLOW3's general

rules for YAML-based configuration.

22

#
Object Configuration for the MyPackage package
#

@package MyPackage
@version $Id: Objects.yaml 123 2009-01-01 12:00:00Z robert $

F3\MyPackage\Foo:
 arguments:
 1: { object: F3\MyPackage\Baz }
 2: { value: "some string" }
 3: { value: false }
 properties:
 bar: { object: F3\MyPackage\BarInterface }
 enableCache: { setting: MyPackage.Cache.enable }

Example 4.13. Sample Objects.yaml file

4.1.2. Objects.php
As an alternative to YAML, it is possible to write configuration files in plain PHP. However,

the PHP file should stick to FLOW3's general rules for PHP-based configuration.

The following code again adds the same configuration as in the Constructor Injection

example:

<?php
declare(ENCODING = 'utf-8');

/* *
 * Object Configuration for the MyPackage package *
 * (this package doesn't really exist, and even if so, the configuration *
 * would probably be different) *
 * */

/**
 * @package MyPackage
 * @version $Id: Objects.php 123 2009-01-01 12:00:00Z robert $
 */

$c['F3\MyPackage\Foo']->arguments->array(
 1 => array('object' => 'F3\MyPackage\Baz'),
 2 => array('value' => 'some string')
);

 // Demonstrates an alternative syntax:
$c['F3\MyPackage\Foo']->arguments->3->value = FALSE;

$c['F3\MyPackage\Foo']->properties->bar->object = 'F3\MyPackage\BarInterface';
$c['F3\MyPackage\Foo']->properties->enableCache->setting = ↩
 'MyPackage.Cache.enable';

?>

Example 4.14. Sample Objects.php file

Caution
Only use these files for configuration, for example don't register autoloader

methods in the Objects.php as this code must be invoked in an earlier stage.

4.1.3. Annotations
A very convenient way to configure certain aspects of objects are annotations. You write

down the configuration directly where it takes effect: in the class file. However, this way of

23

configuring objects is not really flexible, as it is hard coded. That's why only those options can

be set through annotations which are part of the class design and won't change afterwards.

Currently scope and inject are the only supported annotations.

It's up to you defining the scope in the class directly or doing it in a Objects configuration

file – both have the same effect. We recommend using annotations in this case, as the scope

usually is a design decision which is very unlikely to be changed.

/**
 * This is my great class.
 *
 * @scope prototype
 */
class SomeClass {

}

Example 4.15. Sample scope annotation

4.2. Overriding Object Implementations
One advantage of componentry is the ability to replace objects by others without

any bad impact on those parts depending on them. A prerequisite for replaceable

objects is that their classes implement a common interface [http://www.php.net/manual/en/

language.oop5.interfaces.php] which defines the public API of the original object. Other

objects which implement the same interface can then act as a true replacement for the original

object without the need to change code anywhere in the system. If this requirement is met,

the only necessary step to replace the original implementation with a substitute is to alter the

object configuration and set the class name to the new implementation.

To illustrate this circumstance, consider the following classes:

namespace F3\MyPackage;

class Greeter {
 public function sayHelloTo($name) {
 echo('Hello ' . $name);
 }
}

Example 4.16. A simple Greeter class

During initialization the above class will automatically be registered as the object

F3\MyPackage\Greeter and is available to other objects. In the class code of another

object you might find these lines:

 // Use setter injection for fetching an instance
 // of the \F3\MyPackage\Greeter object:
public function injectGreeter(\F3\MyPackage\Greeter $greeter) {
 $this->greeter = $greeter;
}

public function someAction() {
 $greeter->sayHelloTo('Heike');
}

Example 4.17. Code using the object F3_MyPackage_Greeter

Great, that looks all fine and dandy but what if we want to use the much better object

\F3\OtherPackage\GreeterWithCompliments? Well, you just configure the object

\F3\MyPackage\Greeter to use a different class:

http://www.php.net/manual/en/language.oop5.interfaces.php
http://www.php.net/manual/en/language.oop5.interfaces.php
http://www.php.net/manual/en/language.oop5.interfaces.php

24

 // Change the name of the class which
 // represents the object F3\MyPackage\Greeter
F3\MyPackage\Greeter: className: F3\OtherPackage\GreeterWithCompliments

Example 4.18. Objects.yaml file for object replacement

Now all objects who ask for a traditional greeter will get the more polite version.

However, there comes a sour note with the above example: We can't be sure that the

GreeterWithCompliments class really provides the necessary sayHello() method.

The solution is to let both implementations implement the same interface:

namespace F3\MyPackage;

interface GreeterInterface {
 public function sayHelloTo($name);
}

class Greeter implements \F3\MyPackage\GreeterInterface {
 public function sayHelloTo($name) {
 echo('Hello ' . $name);
 }
}

namespace F3\OtherPackage;

class GreeterWithCompliments implements \F3\MyPackage\GreeterInterface{
 public function sayHelloTo($name) {
 echo('Hello ' . $name . '! You look so great!');
 }
}

Example 4.19. The Greeter object type

Instead of referring to the original implementation directly we can now refer to the interface.

In this case we call the object name a object type because it contains the name of a PHP

interface.

 // Use setter injection for fetching an instance �
 // of the \F3\MyPackage\Greeter object:
public function injectGreeter(\F3\MyPackage\GreeterInterface $greeter) {
 $this->greeter = $greeter;
}

public function someAction() {
 $greeter->sayHelloTo('Heike');
}

Example 4.20. Code using the object type F3\MyPackage\GreeterInterface

Finally we have to set which implementation of the F3\MyPackage\GreeterInterface

should be active:

F3\MyPackage\GreeterInterface:
 className: 'F3\OtherPackage\GreeterWithCompliments'

Example 4.21. Objects.yaml file for object type definition

4.3. Configuring Injection
The object framework allows for injection of straight values, objects (i.e. dependencies)

or settings either by passing them as constructor arguments during instantiation of the

25

object class or by calling a setter method which sets the wished property accordingly.

The necessary configuration for injecting objects is usually generated automatically by the

autowiring capabilities of the Object Builder. Injection of straight values or settings, however,

requires some explicit configuration.

4.3.1. Injection Values
Regardless of what injection type is used (constructor or setter injection), there are three

kinds of value which can be injected:

• value: static value of a simple type. Can be string, integer, boolean or array and is passed

on as is.

• object: name of an objects (or object type) which represents a dependency. Dependencies

of the injected object are resolved and an instance of the object is passed along.

• setting: setting defined in one of the Settings.* files. A path separated by dots "."

specifies which setting to inject.

4.3.2. Constructor Injection
Arguments for constructor injection are defined through the arguments option. Each

argument is identified by its position, counting starts with 1.

namespace F3\MyPackage;

class Foo {

 protected $bar;
 protected $identifier;
 protected $enableCache;

 public function __construct(\F3\MyPackage\BarInterface $bar, $identifier, ↩
 $enableCache) {
 $this->bar = $bar;
 $this->identifier = $identifier;
 $this->enableCache = $enableCache;
 }

 public function doSomething() {
 $this->bar->doSomethingElse();
 }
}

Example 4.22. Sample class for Constructor Injection

F3\MyPackage\Foo:
 arguments:
 1: { object: F3\MyPackage\Bar }
 2: { value: "some string" }
 3: { setting: "MyPackage.Cache.enable" }

Example 4.23. Sample configuration for Constructor Injection

Note
It is usually not necessary to configure injection of objects explicitly. It is

much more convent to just declare the type of the constructor arguments (like

F3\MyPackage\BarInterface in the above example) and let the autowiring

feature configure and resolve the dependencies for you.

26

4.3.3. Setter Injection
The following class and the related Objects.yaml file demonstrate the syntax for the

definition of setter injection:

namespace F3\MyPackage;

class Foo {

 protected $bar;
 protected $identifier = 'Untitled';
 protected $enableCache = FALSE;

 public function injectBar(\F3\MyPackage\BarInterface $bar) {
 $this->bar = $bar;
 }

 public function setIdentifier($identifier) {
 $this->identifier = $identifier;
 }

 public function setEnableCache($enableCache) {
 $this->enableCache = $enableCache;
 }

 public function doSomething() {
 $this->bar->doSomethingElse();
 }
}

Example 4.24. Sample class for Setter Injection

F3\MyPackage\Foo:
 properties:
 bar: { object: F3\MyPackage\Bar }
 identifier: { value: "some string" }
 enableCache: { setting: "MyPackage.Cache.enable" }

Example 4.25. Sample configuration for Setter Injection

As you can see, it is important that a setter method with the same name as the property,

preceded by "inject" or "set" exists. It doesn't matter though, if you choose "inject" or

"set", except that "inject" has the advantage of being autowireable. As a rule of thumb

we recommend using "inject" for required dependencies and values and "set" for optional

properties.

4.3.4. Injection of Objects Specified in Settings
In some cases it might be convenient to specify the name of the object to be injected in

the settings rather than in the objects configuration. This can be achieved by specifying the

settings path instead of the object name:

F3\MyPackage\Foo:
 properties:
 bar: { object: MyPackage.fooStuff.barImplementation }

Example 4.26. Injecting an object specified in the settings

fooStuff:
 barImplementation: F3\MyPackage\Bars\ASpecialBar

Example 4.27. Example Settings.yaml of MyPackage

27

4.3.5. Nested Object Configuration
While autowiring and automatic dependency injection offers a great deal of convenience, it

is sometimes necessary to have a fine grained control over which objects are injected with

which third objects injected.

Consider a FLOW3 cache object, a VariableCache for example: the cache itself depends

on a cache backend which on its part requires a few settings passed to its constructor - this

readily prepared cache should now be injected into another object. Sounds complex? With

the objects configuration it is however possible to configure even that nested object structure:

F3\MyPackage\Controller\DefaultController:
 properties:
 cache:
 object:
 name: F3\FLOW3\Cache\VariableCache
 arguments:
 1: value: MyCache
 2:
 object:
 name: F3\FLOW3\Cache\Backend\File
 properties:
 cacheDirectory: value: /tmp/

Example 4.28. Nesting object configuration

4.3.6. Disabling Autowiring
Injecting dependencies is a common task. Because FLOW3 can detect the type of

dependencies a constructor needs, it automatically configures the object to ensure that the

necessary objects are injected. This automation is called autowiring and is enabled by default

for every object. As long as autowiring is in effect, the Object Builder will try to autowire all

constructor arguments and all methods named after the pattern inject*.

If, for some reason, autowiring is not wanted, it can be disabled by setting an option in the

object configuration:

F3\MyPackage\MyObject:
 autoWiringMode: off;

Example 4.29. Turning off autowiring support in Objects.yaml

4.4. Custom Factories
Complex objects might require a custom factory which takes care of all important settings

and dependencies. As we have seen previously, a cache consists of a frontend, a backend

and configuration options for that backend. Instead of creating and configuring these objects

on your own, you can use the F3\FLOW3\Cache\Factory which provides a convenient

create method taking care of all the rest.

$myCache = $cacheFactory->create('MyCache', 'F3\FLOW3\Cache\VariableCache', ↩
 'F3\FLOW3\Cache\Backend\File', array('cacheDirectory' => '/tmp'));

It is possible to specify for each object if it should be created by a custom factory rather than

the Object Builder. Consider the following configuration:

F3\FLOW3\Cache\CacheInterface:
 factoryClassName: F3\FLOW3\Cache\Factory
 factoryMethodName: create

Example 4.30. Sample configuration for a Custom Factory

28

From now on the Cache Factory's create method will be called each time an object of type

CacheInterface needs to be instantiated. If arguments were passed to the getObject

or create method, they will be passed through to the custom factory method:

F3\FLOW3\Cache\CacheInterface:
 factoryClassName: F3\FLOW3\Cache\Factory
 arguments:
 2: value: F3\FLOW3\Cache\VariableCache
 3: value: F3\FLOW3\Cache\Backend\File
 4: value: { cacheDirectory: /tmp }

Example 4.31. YAML configuration for a Custom Factory with default arguments

$myCache = $objectFactory->create('MyCache');

Example 4.32. PHP code using the custom factory

$objectFactory is a reference to the F3\FLOW3\Object\Factory. The argument with

the value MyCache is passed to the Cache Factory as the first parameter. The required

second and third argument and the optional fourth parameter are automatically built from the

values defined in the object configuration.

4.5. Name of Lifecycle Methods
The default name of a lifecycle methods is initializeObject and shutdownObject.

If these methods exist, the initialization method will be called after the object has been

instantiated and all dependencies are injected and the shutdown method is called before the

Object Manager quits its service. The name of both methods is configurable per object for

situations you don't have control over the name of your initialization method (maybe, because

you are integrating legacy code):

F3\MyPackage\MyObject:
 lifecycleInitializationMethod: myInitializeMethodname
 lifecycleShutdownMethod: myShutdownMethodname

Example 4.33. Objects.yaml configuration of the initialization and shutdown method

29

Chapter 5. Configuration Framework
Configuration is an important aspect of versatile applications. FLOW3 provides you with

configuration mechanisms which have a small footprint and are convenient to use and

powerful at the same time. Hub for all configuration is the configuration manager which

handles alls configuration tasks like reading configuration, configuration cascading, and

(later) also writing configuration.

1. Configuration Files
FLOW3 distinguishes between different types of configuration. The most important type of

configuration are the settings, however other configuration types exist for special purposes.

The preferred configuration format is YAML and the configuration options of each type are

defined in their own dedicated file:

Settings.yaml

Contains user-level settings, i.e. configuration options the users or administrators are

meant to change. Settings are the highest level of system configuration.

FLOW3.yaml

Contains settings for the FLOW3 package.

Routes.yaml

Contains routes configuration. This routing information is parsed and used by the MVC

Web Routing mechanism. Refer to the MVC section for more information.

Objects.yaml

Contains object configuration, i.e. options which configure objects and the combination

of those on a lower level. See the Object Manager section for more information.

Packages.yaml

Contains package configuration, i.e. options which define certain specialties of the

package such as custom autoloaders or special resources.

Caches.yaml

Contains a list of caches which are registered automatically. Caches defined in this

configuration file are registered in an early stage of the boot process and profit from

mechanisms such as automatic flushing by the File Monitor.

1.1. File Locations
There are several locations where configuration files may be placed. All of them are scanned

by the configuration manager during initialization and cascaded into a single configuration

tree. The following locations exist (listed in the order they are loaded):

/Packages/PackageName/Configuration/

The Configuration directory of each package is scanned first. Only at this stage

new configuration options can be introduced (by just defining a default value). After all

configuration files form these directories have been parsed, the resulting configuration

containers are protected against further introduction of new options.

Note that FLOW3.yaml files are only allowed in the FLOW3 package and are ignored in

any other package configuration directory.

30

/Configuration/

Configuration in the global Configuration directory override the default settings which

were defined in the package's configuration directories. To safe users from typos, options

which are introduced on this level will result in an error message.

/Configuration/ApplicationContext/

There may exist a subdirectory for each application context (see FLOW3 Bootstrap

section). This configuration is only loaded if FLOW3 runs in the respective application

context. Like in the global Configuration directory, no new configuration options can

be introduced at this point - only their values can be changed.

2. Defining Configuration
2.1. Configuration Formats

Although YAML is the preferred and default configuration format, it is possible to use

other kinds of markup. Currently FLOW3 has built-in support for YAML and PHP based

configuration.

2.2. YAML
YAML is a well-readable format which is especially well-suited for defining configuration. The

full specification among with many examples can be found on the YAML website [???]. All

important parts of the YAML specification are supported by the parser used by FLOW3, it

might happen though that some exotic features won't have the desired effect. At best you look

at the configuration files which come with the FLOW3 distribution for getting more examples.

#
Settings Configuration for the TYPO3CR Package
#

$Id: Settings.yaml 1234 2009-01-01 12:00:00Z foobar $

TYPO3CR:

 # The storage backend configuration
 storage:
 backend: 'F3\TYPO3CR\Storage\Backend\PDO'
 backendOptions:
 dataSourceName: 'sqlite:%FLOW3_PATH_DATA%Persistent/TYPO3CR.db'
 username:
 password:

 # The indexing/search backend configuration
 search:
 backend: 'F3\TYPO3CR\Storage\Search\Lucene'
 backendOptions:
 indexLocation: '%FLOW3_PATH_DATA%Persistent/Index/'

Example 5.1. Example for a package-level Settings.yaml

2.3. PHP
Although configuration files are plain PHP, they should follow FLOW3's conventions for

configuration files. All options are properties of a special configuration container object which

is automagically provided in a variable named $c.

???
???

31

<?php
declare(ENCODING="utf-8");

/* *
 * Settings Configuration for the TYPO3CR Package *
 * */

/**
 * @package TYPO3CR
 * @version $Id: Objects.php 1234 2009-01-10 12:00:00Z johndoe $
 */

/**
 * The storage backend to use for TYPO3CR.
 *
 * @var F3_TYPO3CR_Storage_BackendInterface
 */
$c->TYPO3CR->storage->backend = 'F3\TYPO3CR\Storage\Backend\PDO';

/**
 * Options which are passed to the storage backend used by TYPO3CR
 *
 * @var array
 */
$c->TYPO3CR->storage->backendOptions = array(
 'dataSourceName' => 'sqlite:/tmp/TYPO3CR.db',
 'username' => NULL,
 'password' => NULL
);

?>

Example 5.2. Example for a package-level Settings.php

As you can see, you can introduce new configuration options by just assigning a value to

them using PHP's object / member variable syntax.

Technically the $c variable is an instance of \F3\FLOW3\Configuration\Container

which automatically creates sub containers as soon as you try to access a not-yet-existing

property. Taking the above example, $c, $c->TYPO3CR and $c->TYPO3CR->storage are

all Configuration Container objects which were created on the fly. backend is just a property

(member variable) of $c->TYPO3CR->storage and contains a value of the type string.

Note
Please note that the first level of your option tree must always contain the key

of the package you're referring to (TYPO3CR in the above example). While it

technically is possible to define and modify settings of other package in your own

package, it's certainly something you should do only if really necessary.

There are two alternatives to the above object-driven syntax and all the three of them may

be mixed as you like.

Instead of the object / property way, you can equally use an array syntax:

/**
 * The storage backend to use for TYPO3CR.
 *
 * @var \F3\TYPO3CR\Storage\BackendInterface
 */
$c->TYPO3CR->storage['backend'] = 'F3\TYPO3CR\Storage\Backend\PDO';

Example 5.3. Settings declaration using the object and the array syntax

32

Finally you may even call virtual setter methods in order to get a more readable configuration

file when setting many options on the same container:

 // Traditional object / property syntax:

$c->Demo->administrator->name = 'John Doe';
$c->Demo->administrator->email = 'johndoe@typo3.org';
$c->Demo->administrator->country = 'DE';

 // The same with the virtual setters syntax:

$c->Demo->administrator->
 setName('JohnDoe')->
 setEmail('johndoe@typo3.org')->
 setCountry('DE');

Example 5.4. Settings declaration with the object syntax and virtual setters

2.4. Constants (special case)
In the Packages configuration you can use two special options influencing the class

autoloader of FLOW3's resource manager.

Caution
This might be a temporary solution which will surely change as soon as the

resource manager and the package manager become more mature.

$c->PackageKey->resourceManager->specialClassNameAndPaths

This can be used to register classes outside the include_path and not covered by the

FLOW3 class autoloader.

$c->PackageKey->resourceManager->includePaths

This can be used to add paths to the PHP include_path.

The values for those options may contain markers which are replaced before the value is

used:

%PATH_PACKAGE%

Will be replaced by the path to the package folder.

%PATH_PACKAGE_CLASSES%

Will be replaced by the path to the package's Classes folder.

%PATH_PACKAGE_RESOURCES%

Will be replaced by the path to the package's Resources folder.

#
Package configuration of the Smarty package
#

@package Smarty

Smarty:
 resourceManager:
 specialClassNameAndPaths:
 Smarty: %PATH_PACKAGE_RESOURCES%PHP/Smarty/Smarty.class.php

Example 5.5. Example for using specialClassNameAndPaths

33

<?php
declare(ENCODING="utf-8");

/* *
 * Packages configuration of the Smarty package *
 * */

/**
 * @package Smarty
 * @version $Id:PackageConfiguration.php 178 2007-03-09 10:30:04Z robert $
 */

$c->Smarty->resourceManager->specialClassNameAndPaths->Smarty = �
 '%PATH_PACKAGE_RESOURCES%PHP/Smarty/Smarty.class.php';

?>

Example 5.6. Example for using specialClassNameAndPaths

3. Accessing Configuration
There are certain situations in which FLOW3 will automatically provide you with the right

configuration - the MVC's Action Controller is such a case. However, in most other cases you

will have to retrieve the configuration yourself. The Configuration Manager comes up with a

very simple API providing you access to the already parsed and cascaded configuration.

3.1. Working with Settings
What you usually want to work with are settings. The following example demonstrates how

to let FLOW3 inject the settings of a classes' package and output some option value:

namespace F3\Demo;

class SomeClass {

 /**
 * @var array
 */
 protected $settings;

 /**
 * Inject the settings
 *
 * @param array $settings
 * @return void
 */
 public function injectSettings(array $settings) {
 $this->configurationManager = $configurationManager;
 }

 /**
 * Outputs some settings of the "Demo" package.
 *
 * @return void
 */
 public function theMethod() {
 echo ($this->settings->administrator->name);
 echo ($this->settings->administrator->email);
 }
}

Example 5.7. Settings Injection

34

3.2. Manually Retrieving Settings
There might be situations in which you don't want to get the settings injected. The

Configuration Manager provides an API for these cases as you can see in the next example.

namespace F3\Demo;

class SomeClass {

 /**
 * @var \F3\FLOW3\Configuration\Manager
 */
 protected $configurationManager;

 /**
 * Inject the Configuration Manager
 *
 * @param \F3\FLOW3\Configuration\Manager $configurationManager
 * @return void
 */
 public function injectConfigurationManager(\F3\FLOW3\Configuration\Manager �
 $configurationManager) {
 $this->configurationManager = $configurationManager;
 }

 /**
 * Output some settings of the Demo package
 *
 * @return void
 */
 public function theMethod() {
 $mySettings = $this->configurationManager->getSettings('Demo');
 echo ($mySettings->administrator->name);
 echo ($mySettings->administrator->email);
 }
}

Example 5.8. Retrieving settings

3.3. Working with other configuration
Although infrequently necessary, it is also possible to retrieve options of the more

special configuration types. The configuration manager provides a method called

getSpecialConfiguration() for this purpose. The result this method returns depends

on the actual configuration type you are requesting.

Bottom line is that you should be highly aware of what you're doing when working with these

special options. Usually there are much better ways to get the desired information (e.g. ask

the Object Manager for object configuration).

35

Chapter 6. Resource Manager

36

Chapter 7. MVC Framework
1. Introduction
1.1. Model-View-Controller

In the design of FLOW3's architecture we have taken great care to separate concerns and

assign each part of the framework with well-defined tasks. The separation of concerns is an

important principle of good software design and its most prominent representative probably is

the Model-View-Controller pattern. MVC separates the business logic from the presentation

by splitting up user interaction into three roles:

• The model is an object which contains data and business logic of a certain domain. It

doesn't contain any information about the presentation of that data, but rather defines the

behaviour. In the FLOW3 project we prefer a special kind of model, the Domain Model

[http://martinfowler.com/eaaCatalog/domainModel.html].

• The view represents the display of the model on the web or another output channel. Views

only display data, they don't build or modify it.

• The controller reacts on user input, selects and manipulates the model as accordingly,

selects a view and passes it the prepared model for rendering.

This diagram outlines the collaboration between model, view and controller:

Figure 7.1. Model-View-Controller Pattern

1.2. Other Patterns Used
Design Patterns (and MVC is one of them) are not only great for solving reoccuring design

problems in a structured manner - they also help you communicating software designs. The

following patterns play an important role in FLOW3's MVC mechanism and might give you

a better idea of the overall design:

• Incoming requests are handled by a Request Handler which takes the role of a Front

Controller [???].

• Template View [???] is the most commonly used pattern for views, but Transform Views

[???] and Two-Step Views [???] are equally supported.

http://martinfowler.com/eaaCatalog/domainModel.html
http://martinfowler.com/eaaCatalog/domainModel.html
???
???
???
???
???
???
???
???
???

37

• The preferred type of model is the Domain Model [???].

1.3. Hello World!
Let's start with an example before we go into greater detail of request handling and the

internals of the MVC framework. The minimal approach is to create an Action Controller

which just returns “Hello World!”. To begin with, we need to create some directories which

contain the code of our FLOW3 package and eventually the controller class:

Packages/

 Demo/

 Classes/

 Controller/

 DefaultController.php

The DefaultController class looks as simple as this (leaving out the very recommended

comments):

namespace F3\Demo\Controller;

class DefaultController extends \F3\FLOW3\MVC\Controller\ActionController {
 public function indexAction() {
 return "Hello World!";
 }
}

Example 7.1. Hello World! controller

Provided that the document root of your local server points to FLOW3's Public/ directory,

you will get the following output when calling the URI http://localhost/demo/:

Hello World!

Great, that was easy - but didn't we say that it's the view's responsibility to take care of the

presentation? Let's create a simple PHP-based view for that purpose:

Packages/

 Demo/

 Classes/

 Controller/

 DefaultController.php

 View/

 DefaultIndex.php

The view's code is equally trivial:

namespace F3\Demo\View;

class DefaultIndex extends \F3\FLOW3\MVC\View\AbstractView {
 public function render() {
 return "Hello World!";
 }
}

Example 7.2. Hello World! view

Finally our action controller needs a little tweak to return the rendered view instead of shouting

“Hello World!” itself:

???
???

38

namespace F3\Demo\Controller;

class DefaultController extends \F3\FLOW3\MVC\Controller\ActionController {
 public function indexAction() {
 return $this->view->render();
 }
}

Example 7.3. Improved Hello World! controller

1.4. Recommended File Structure
As you have seen in the hello world example, conventions for the directory layout simplify

your development a lot. There's no need to register controllers, actions or views if you follow

our recommended file structure. These are the rules:

• Controllers are located in their own directory Controller just below the Classes

directory of your package. They can have arbitrary names while the DefaultController

has a special meaning: If the package was specified in the request but no controller, the

DefaultController will be used.

• View classes are situated below a View directory. The classname of the view is a

combination of the name of the controller and the name of the action.

This sample directory layout demonstrates the above rules:

Packages/

 Demo/

 Classes/

 Controller/

 DefaultController.php

 CustomerController.php

 OrderController.php

 View/

 DefaultIndex.php

 CustomerIndex.php

 CustomerList.php

 CustomerDetails.php

 OrderList.php

Example 7.4. Sample file structure

Adhering to these conventions has the advantage that the classname of the view for example

is resolved automatically. However it is possible (and not really difficult) to deviate from this

layout and have a completely different structure.

1.5. From the URI to the view
Caution
For the example URIs we assume that the web root directory of your local server

points to FLOW3's public/ directory. If that's not the case you have to extend

the URI accordingly.

FLOW3 provides a standard way of resolving the URI to your MVC-Objects.

39

Say, you want to see the list of customers (based on the file-structure-example above). The

URI to get the list would be: http://localhost/demo/customer/list.html or just

http://localhost/demo/customer/list.

This URI will be resolved into the package-name (Demo), controller-name (Customer),

action-name(list) and format-name (html - which is the default format).

Depending on that, the controller \F3\Demo\Controller\CustomerController

(Pattern: 'F3\@package\Controller\@controllerController') and its method

listAction() will be used. The corresponding view is \F3\Demo\View\CustomerList

(Pattern: 'F3\@package\View\@controller@action@format').

If you have a look at the view pattern, you see, that you can easily add a view that creates

an xml-output by creating the class \F3\Demo\View\CustomerListXML. You will get the

xml-output by calling the URI http://localhost/demo/customer/list.xml.

2. Request and Response
No matter if a FLOW3 application runs in a web context or is launched from the command

line, the basic workflow is always the same: The user request is analyzed and forwarded to an

appropriate controller which decides on which actions to take and finally returns a response

which is handed over to the user. This section highlights the flow and the collaborators in

the request-response machinery.

2.1. Request Processing Overview
A sequence diagram is worth a thousand words said my grandma, so let's take a look at the

standard request-response workflow in FLOW3:

Figure 7.2. Example of a Web Request-Response Workflow

As you see, there are a lot of parts of the framework involved for answering a request - and

the diagram doesn't even consider caching or forwarding of requests. But we didn't create

this structure just for the fun of it - each object plays an important role as you'll see in the

next sections.

40

2.2. Request Handler
The request handler takes the important task to handle and respond to a request. There

exists exactly one request handler for each request type. By default web and command line

requests are supported, but more specialized request handlers can be developed, too.

Before one of the request handlers comes to play, the framework needs to determine which

of them is the most suitable for the current request. The request handler resolver asks all

of the registered request handlers to rate on a scale how well they can handle the current

raw request. The resolver then chooses the request handler with the most points and passes

over the control.

Custom request handlers for special purposes just need to implement the \F3\FLOW3\MVC

\RequestHandlerInterface. All classes implementing that interface are automatically

registered and will be considered while resolving a suitable request handler.

2.3. Request Builder
When a request handler receives a raw request, it needs to build a request object which can

be passed to the dispatcher and later to the controller. The request building delegated to a

request builder which can build the required request type (ie. web, CLI etc.).

The building process mainly consists of

1. create a new request object

2. set some request-type specific parameters (like the request URI for a web request)

3. determine and set the responsible controller, action and action arguments

Especially the last step is important and requires some more or less complex routing in case

of web requests.

2.4. Request Processors
Requests which were built by the request builder usually fit the most common needs. For

special demands it is possible to postprocess the request object before it is sent to the

dispatcher. Request processors can be registered through the Request Processor Chain

Manager and are - as the name suggests - invoked in a chain.

2.5. Request Dispatcher
The final task of the MVC framework consists in dispatching the request to the controller

specified in the request object. The request dispatcher will try to call the action specified in

the request object and if none was specified fall back on a default action.

Note
There are more features planned for the dispatcher, but at the time of this writing

they have not yet been implemented.

2.6. Request Types
FLOW3 supports the most important request types out of the box. Additional request

types can easily be implemented by extending the \F3\FLOW3\MVC\Request class and

registering a request handling which can handle the new request type (and takes care of

41

building the request object). Here are the request types which come with the default FLOW3

distribution:

2.6.1. Web Request / Response
Web requests are the most common request types. Currently only the basic features are

implemented, but further options - especially for the web response - are in the pipeline.

2.6.2. CLI Request / Response
Requests from the command line are recognized by the used SAPI (Server Application

Programming Interface). This request type is basically the same as the generic request type

and mainly exists as a marker.

2.6.3. AJAX Request / Response

Note
This request type has not yet been implemented

3. Controller

3.1. Action Controller
Setting $this->viewObjectName to a view object name overrides the automatic resolving

of the view name. Can be used for definining a standard view, for example \F3\Fluid\View

\TemplateView.

3.1.1. Initialization Methods
initializeController

initializeAction

initializeView

3.1.2. Configuration

3.1.3. Supported Request Types

3.1.4. Arguments

3.1.5. Action Methods
$this->indexActionMethodName

3.1.6. Action View
- $this->initializeView = TRUE | FALSE

3.2. Other Controllers

3.2.1. Abstract Controller

42

3.2.2. Request Handling Controller

3.2.3. Default Controller

4. View
4.1. Template View

4.2. Special Views
4.2.1. Default View

4.2.2. Empty View

5. Helpers

6. Model

7. Routing

8. CLI request handling
FLOW3's CLI request handling offers a comfortable and flexible way of calling code from the

command line:

php index.php [command] [options] [--] [arguments]

command, options and arguments are optional, with varying results. The command

structure follows what is commonly accpeted on unixoid systems for CLI programs:

command

If not given, the default controller of the FLOW3 package is used and it's index action

is called. While this is an allowed call, it hardly makes sense (other than checking if

FLOW basically works). If command is given then it is defined as package [[sub1..N]

controller action]

First part is always the package. If only the package is given, it's default controller's index

action is called.

If at least three command parts are given, the last two sepcify controller and action.

Anything in between specifys a sub package structure.

testing cli run would call the "run" action of the "cli" controller in the "Testing"

package

typo3cr admin setup default would call the "setup" controller's "default" action

in the subpackage "admin" of the package "TYPO3CR"

Example 7.5. Some FLOW3 CLI command specifications

options

Options are either short- or long-style. The first option detected ends collecting command

parts. Here are some examples:

43

-o -f=value --a-long-option --with-spaces="is possible" --input

file1 -o=file2 --event-this = works

Example 7.6. Giving options to FLOW3 CLI requests

arguments

Arguments can follow and will be available to the called controller in the request object.

To distinguish between command and arguments in cases where no options are given

the seperator -- must be used.

Calling the TYPO3CR setup:

php index.php typo3cr admin setup setup --dsn=sqlite:/tmp/typo3cr.db

--indexlocation=/tmp/lucene/

Running FLOW3 unit tests:

php index.php testing cli run --package-key=FLOW3 --output-

directory=./

Rendering the FLOW3 documentation to HTML:

php index.php doctools render render -p FLOW3 -o flow3-manual/

Example 7.7. Some FLOW3 CLI commands

44

Chapter 8. Cache Framework

45

Chapter 9. Error and Exception Handling

46

Chapter 10. AOP Framework
1. Introduction

Aspect-Oriented Programming (AOP) is a programming paradigm which complements

Object-Oriented Programming (OOP) by separating concerns of a software application to

improve modularization. The separation of concerns (SoC) aims for making a software easier

to maintain by grouping features and behavior into manageable parts which all have a specific

purpose and business to take care of.

OOP already allows for modularizing concerns into distinct methods, classes and packages.

However, some concerns are difficult to place as they cross the boundaries of classes and

even packages. One example for such a cross-cutting concern is security: Although the main

purpose of a Forum package is to display and manage posts of a forum, it has to implement

some kind of security to assert that only moderators can approve or delete posts. And many

more packages need a similar functionality for protect the creation, deletion and update of

records. AOP enables you to move the security (or any other) aspect into its own package

and leave the other objects with clear responsibilities, probably not implementing any security

themselves.

Aspect-Oriented Programming has been around in other programming languages for quite

some time now and sophisticated solutions taking advantage of AOP exist. FLOW3's AOP

framework allows you to use of the most popular AOP techniques in your own PHP

application. In contrast to other approaches it doesn't require any special PHP extensions,

additional compile steps or modification of the target code – and it's a breeze to configure.

Tip
In case you are unsure about some terms used in this introduction or later in

this chapter, it's a good idea looking them up (for example at Wikipedia [http://

en.wikipedia.org]). Don't think that you're the only one who has never heard of

a Pointcut or SoC1 – we had a hard time learning these too. However, it's worth

the hassle, as a common vocabulary improves the communication between

developers a lot.

1.1. AOP concepts and terminology
Let's stay with the example of a Forum for a while. The classes of the forum don't

implement security themselves, but somehow we have to make sure that whenever a method

deletePost() is called, a security check takes place. The class containing the delete

method is called the target class. We have a new aspect called "security" which we'd like to

weave into that class. Whenever the method deletePost() is called, a method interceptor

defined by an around advice will intercept the target method and only proceed if the operation

is allowed in the current security context.

At the first (and the second, third, ...) glance, the terms used in the AOP context are not really

intuitive. But, similar to most of the other AOP frameworks, we better stick to them, to keep

a common language between developers. Here they are:

Aspect

An aspect is the part of the application which cross-cuts the core concerns of multiple

objects. In FLOW3, aspects are implemented as regular classes which are tagged by the

http://en.wikipedia.org
http://en.wikipedia.org
http://en.wikipedia.org

47

@aspect annotation. The methods of an aspect class represent advices, the properties

act as an anchor for introductions.

Join point

A join point is a point in the flow of a program. Examples are the execution of

a method or the throw of an exception. In FLOW3, join points are represented by

the \F3\FLOW3\AOPJoinPoint object which contains more information about the

circumstances like name of the called method, the passed arguments or type of the

exception thrown. A join point is an event which occurs during the program flow, not a

definition which defines that point.

Advice

An advice is the action taken by an aspect at a particular join point. Advices are

implemented as methods of the aspect class. These methods are executed before and /

or after the join point is reached.

Pointcut

The pointcut defines a set of joinpoints which need to be matched before running an

advice. The pointcut is configured by a pointcut expression which defines when and

where an advice should be executed. FLOW3 uses methods in an aspect class as

anchors for pointcut declarations.

Pointcut expression

A poincut expression is the condition under which a joinpoint should match. It may, for

example, define that joinpoints only match on the execution of a (target-) method with a

certain name. Pointcut expressions are used in pointcut- and advice declarations.

Target

A class or method being adviced by one or more aspects is referred to as a target class /-

method.

Introduction

An introduction redeclares the target class to implement an additional interface. By

declaring an introduction it is possible to introduce new interfaces and an implementation

of the required methods without touching the code of the original class.

The following terms are related to advices:

Before advice

A before advice is executed before the target method is being called, but cannot prevent

the target method from being executed.

After returning advice

An after returning advice is executed after returning from the target method. The result of

the target method invocation is available to the after returning advice, but it can't change

it. If the target method throws an exception, the after returning advice is not executed.

After throwing advice

An after throwing advice is only executed if the target method throwed an exception. The

after throwing advice may fetch the exception type from the join point object.

After advice

An after advice is executed after the target method has been called, no matter if an

exception was thrown or not.

48

Around advice

An around advice is wrapped around the execution of the target method. It may execute

code before and after the invocation of the target method and may ultimately prevent

the original method from being executed at all. An around advice is also responsible for

calling other around advices at the same join point and returning either the original or a

modified result for the target method.

Advice chain

If more than one around advice exists for a join point, they are called in an onion-like

advice chain: The first around advice probably executes some before-code, then calls

the second around advice which calls the target method. The target method returns a

result which can be modified by the second around advice, is returned to the first around

advice which finally returns the result to the initiator of the method call. Any around advice

may decide to proceed or break the chain and modify results if necessary.

1.2. FLOW3 AOP concepts
Aspect-Oriented Programming was, of course, not invented by us2. Since the initial release

of the concept, dozens of implementations for various programming languages evolved.

Although a few PHP-based AOP frameworks do exist, they followed concepts which did

not match the goals of FLOW3 (to provide a powerful, yet developer-friendly solution) when

the development of TYPO3 5.0 began. We therefore decided to create a sophisticated but

pragmatic implementation which adopts the concepts of AOP but takes PHP's specialties and

the requirements of typical FLOW3 applications into account. In a few cases this even lead

to new features or simplifications because they were easier to implement in PHP compared

to Java.

FLOW3 pragmatically implements a reduced subset of AOP, which satisfies most needs

of web applications. The join point model allows for intercepting method executions but

provides no special support for advising field access3. For the sake of simplicity and

performance, pointcuts don't allow criteria which have to be evaluated at runtime (such as

matching argument values of a method) and pointcut expressions are based on well-known

regular expressions instead of requiring the knowledge of a dedicated expression language.

Pointcut filters and join point types are modularized and can be extended if more advanced

requirements should arise in the future.

1.3. Implementation overview
FLOW3's AOP framework does not require a pre-processor or an aspect-aware PHP

interpreter to weave in advices. It is implemented and based on pure PHP and doesn't need

any specific PHP extension. However, it does require the Object Manager to fulfill its task.

FLOW3 uses PHP's reflection capabilities to analyze declarations of aspects, pointcuts and

advices and implements method interceptors as a dynamic proxy. In accordance to the

2AOP was rather invented by Gregor Kiczalesand his team at the Xerox Palo Alto Research Center [http://www.parc.com/]. The

original implementation was called AspectJ [http://eclipse.org/aspectj] and is an extension to Java. It still serves as a de-facto

standard and is now maintained by the Eclipse Foundation.
3Intercepting setting and retrieval of properties can easily be achieved by declaring a before-, after- or around advice.

http://www.parc.com/
http://www.parc.com/
http://eclipse.org/aspectj
http://eclipse.org/aspectj

49

GoF patterns4, the proxy classes act as a placeholders for the target object. They are true

subclasses of the original and override adviced methods by implementing a interceptor

method. The proxy classes are generated automatically by the AOP framework and cached

for further use. If a class has been adviced by some aspect, the Object Manager will only

deliver instances of the proxy class instead of the original.

The approach of storing generated proxy classes in files provides the whole advantage of

dynamic weaving with a minimum performance hit. Debugging of proxied classes is still easy

as they truly exist in real files.

2. Aspects
Aspects are abstract containers which accommodate pointcut-, introduction- and advice

declarations. In most frameworks, including FLOW3, aspects are defined as plain classes

which are tagged (annotated) as an aspect. The following example shows the definition of

a hypothetical FooSecurity aspect:

namespace F3\MySecurityPackage;

/**
 * An aspect implementing security for Foo
 *
 * @package MySecurityPackage
 * @author John Doe <john@typo3.org>
 * @aspect
 */
class FooSecurityAspect {

}

Example 10.1. Declaration of an aspect

As you can see, \F3\MySecurityPackage\FooSecurityAspect is just a regular PHP

class which may (actually must) contain methods and properties. What it makes it an aspect

is solely the @aspect annotation mentioned in the class comment. The AOP framework

recognizes this tag and registers the class as an aspect.

Note
A void aspect class doesn't make any sense and if you try to run the above

example, the AOP framework will throw an exception complaining that no advice,

introduction or pointcut has been defined.

3. Pointcuts
If we want to add security to foo, we need a method which carries out the security checks

and a definition where and when this method should be executed. The method is an advice

which we're going to declare in a later section, the “where and when” is defined by a pointcut

expression in a pointcut declaration.

You can either define the pointcut in the advice declaration or set up named pointcuts to help

clarify their use.

4GoF means Group of Four and refers to the authors of the classic book Design Patterns – Elements of Reusable Object-Oriented

Software

50

A named pointcut is represented by a method of an aspect class. It contains two pieces of

information: The pointcut name, defined by the methodname, and the poincut expression,

declared by an annotation. The following pointcut will match the execution of methods whose

name starts with “delete”, mo matter in which class they are defined:

 /**
 * A pointcut which matches all methods whose name starts with "delete".
 *
 * @pointcut method(.*->delete.*())
 * @author John Doe <john@typo3.org>
 */
 public function deleteMethods() {}

Declaration of the pointcut expression

Name of the pointcut

Example 10.2. Declaration of a named pointcut

3.1. Pointcut expressions
As already mentioned, the pointcut expression configures the filters which are used to match

against join points. It is comparable to an if condition in PHP: Only if the whole condition

evaluates to TRUE, the statement is executed - otherwise it will be just ignored. If a pointcut

expression evaluates to TRUE, the pointcut matches and advices which refer to this poincut

become active.

Note
The AOP framework AspectJ provides a complete pointcut language with

dozens of pointcut types and expression constructs. FLOW3 makes do with

only a small subset of that language, which we think already suffice for even

complex enterprise applications. If you're interested in the original feature set,

it doesn't hurt throwing a glance at the AspectJ Programming Guide [http://

www.eclipse.org/aspectj/doc/released/progguide/index.html].

3.2. Pointcut designators
A pointcut expression always consists of two parts: The poincut designator and its

parameter(s). The following designators are supported by FLOW3:

3.2.1. method()
The method() designator matches on the execution of methods with a certain name. The

parameter specifies the class and method name, regular expressions can be used for more

flexibility5. It follows the following scheme:

method(public|protected ClassName->methodName())

Specifying the visibility modifier (public, protected or private) is optional - if none is specified,

any visibility will match. The class- and method name can be specified as a regular

expression. Here are some examples for matching method executions:

5Internally, PHP's preg_match() function is used to match the method name. The regular expression will be enclosed by /

^...$/ (without the dots of course). Backslashes will be escaped to make namespace use possible without further hassle.

http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/progguide/index.html

51

Matches all public methods in class \F3\MyPackage\MyObject:

method(public F3\MyPackage\MyObject->.*())

Matches all delete methods (even protected and private ones) in any class of the package

MyPackage:

method(F3\MyPackage\.*->delete.*())

Example 10.3. method() pointcut designator

Note
In other AOP frameworks, including AspectJ™ and Spring™, the method

designator does not exist. They rather use a more fine grained approach with

designators such as execution, call and cflow. As FLOW3 only supports

matching to method execution join points anyway, we decided to simplify things

by allowing only a more general method designator.

3.2.2. class()
The class() designator matches on the execution of methods defined in a class with

a certain name. The parameter specifies the class name, again regular expressions are

allowed here. The class() designator follows this simple scheme:

class(classname)

An example for the usage of this designator:

Matches all methods in class F3\MyPackage\MyObject:

class(F3\MyPackage\MyObject)

Example 10.4. class() pointcut designator

3.2.3. within()
The within() designator matches on the execution of methods defined in a class of a

certain type. A type matches if the class is a subclass of or implements an interface of the

given name. The within() designator has this simple syntax:

within(type)

An example for the usage of within():

Matches all methods in classes which implement the logger interface:

within(\F3\FLOW3\Log\LoggerInterface)

Matches all methods in classes which are part of the Foo layer:

within(\F3\FLOW3\FooLayerInterface)

Example 10.5. within() pointcut designator

3.2.4. classTaggedWith()
The classTaggedWith() designator matches on classes which are tagged with a certain

annotation. As with class and method names, a regular expression can be used to describe

the matching tags. The syntax of this designator is as follows:

classTaggedWith(tag)

52

Matches all classes which are tagged with an "@entity" annotation:

classTaggedWith(entity)

Matches all classes which are tagged with an annotation starting with "@cool":

classTaggedWith(cool.*)

Example 10.6. classTaggedWith() pointcut designator

3.2.5. methodTaggedWith()
The methodTaggedWith() designator matches on methods which are tagged with a

certain annotation. As with other pointcut designators, a regular expression can be used to

describe the matching tags. The syntax of this designator is as follows:

methodTaggedWith(tag)

Matches all method which are tagged with an "@special" annotation:

methodTaggedWith(special)

Example 10.7. methodTaggedWith() pointcut designator

3.2.6. setting()
The setting() designator matches if the given configuration option is set to TRUE, or if an

optional given comparison value equals to its configured value. You can use this designator

as follows:

Matches if "my: configuration: option" is set to TRUE in the current execution

context:

setting(my: configuration: option)

Matches if "my: configuration: option" is equal to "AOP is cool" in the current

execution context: (Note: single and double quotes are allowed)

setting(my: configuration: option = 'AOP is cool')

Example 10.8. setting() pointcut designator

3.2.7. filter()
If the built-in filters don't suit your needs you can even define your own custom

filters. All you need to do is create a class implementing the \F3\FLOW3\AOP

\PointcutFilterInterface and develop your own logic for the matches() method.

The custom filter can then be invoked by using the filter() designator:

filter(CustomFilterObjectName)

If the current method matches is determined by the custom filter:

filter(F3\MyPackage\MyCustomPointcutFilter)

Example 10.9. filter() pointcut designator

3.3. Combining pointcut expressions
All pointcut expressions mentioned in previous sections can be combined into a whole

expression, just like you may combine parts to an overall condition in an if construct. The

53

supported operators are “&&”, “||” and “!” and they have the same meaning as in PHP.

Nesting expressions with parentheses is not supported but you may refer to other pointcuts

by specifying their full name (i.e. class- and method name). This final example shows how

to combine and reuse pointcuts and ultimately build a hierarchy of pointcuts which can be

used conveniently in advice declarations:

namespace F3\TestPackage;

/**
 * Fixture class for testing poincut definitions
 *
 * @package TestPackage
 * @aspect
 */
class PointcutTestingAspect {

 /**
 * Pointcut which includes all method executions in
 * pointcutTestingTargetClasses except those from Target
 * Class number 3.
 *
 * @pointcut method(F3\TestPackage\PointcutTestingTargetClass.*->.*()) && �
 !method(F3\TestPackage\PointcutTestingTargetClass3->.*())
 */
 public function pointcutTestingTargetClasses() {}

 /**
 * Pointcut which consists of only the
 * F3\TestPackage\OtherPointcutTestingTargetClass.
 *
 * @pointcut method(F3\TestPackage\OtherPointcutTestingTargetClass->.*())
 */
 public function otherPointcutTestingTargetClass() {}

 /**
 * A combination of both above pointcuts
 *
 * @pointcut F3\TestPackage\PointcutTestingAspect->pointcutTestingTargetClasses �
 || F3\TestPackage\PointcutTestingAspect->otherPointcutTestingTargetClass
 * @author Robert Lemke <robert@typo3.org>
 */
 public function bothPointcuts() {}

 /**
 * A pointcut which matches all classes from the service layer
 *
 * @pointcut within(\F3\FLOW3\ServiceLayerInterface)
 */
 public function serviceLayerClasses() {}

 /**
 * A pointcut which matches any method from the BasicClass and all classes
 * from the service layer
 *
 * @pointcut method(F3\TestPackage\Basic.*->.*()) || within(F3\FLOW3\Service.*)
 */
 public function basicClassOrServiceLayerClasses() {}
}

Example 10.10. Combining pointcut expressions

4. Declaring advice
With the aspect and pointcuts in place we are now ready to declare the advice. Remember

that an advice is the actual action, the implementation of the concern you want to weave in

54

to some target. Advices are implemented as interceptors which may run before and / or after

the target method is called. Four advice types allow for these different kinds of interception:

Before, After returning, After throwing and Around.

Other than being of a certain type, advices always come with a pointcut expression which

defines the set of join points the advice applies for. The pointcut expression may, as we have

seen earlier, refer to other named pointcuts.

4.1. Before advice
A before advice allows for executing code before the target method is invoked. However, the

advice cannot prevent the target method from being executed, nor can it take influence on

other before advices at the same join point.

 /**
 * Before advice which is invoked before any method call within the News
 * package
 *
 * @before class(F3\News\.*->.*())
 */
 public function myBeforeAdvice(\F3\FLOW3\AOP\JoinPointInterface �
 $joinPoint) {
 }

Example 10.11. Declaration of a before advice

4.2. After returning advice
The after returning advice becomes active after the target method normally returns from

execution (i.e. it doesn't throw an exception). After returning advices may read the result of

the target method, but can't modify it.

 /**
 * After returning advice
 *
 * @afterreturning method(public F3\News\FeedAgregator->[import|update].*()) �
 || F3\MyPackage\MyAspect->someOtherPointcut
 */
 public function myAfterReturningAdvice(\F3\FLOW3\AOP\JoinPointInterface �
 $joinPoint) {
 }

Example 10.12. Declaration of an after returning advice

4.3. After throwing advice
Similar to the “after returning” advice, the after throwing advice is invoked after method

execution, but only if an exception was thrown.

 /**
 * After throwing advice
 *
 * @afterthrowing within(F3\News\ImportantLayer)
 */
 public function myAfterThrowingAdvice(\F3\FLOW3\AOP\JoinPointInterface �
 $joinPoint) {
 }

Example 10.13. Declaration of an after throwing advice

55

4.4. After advice
The after advice is a combination of “after returning” and “after throwing”: These advices

become active after method execution, no matter if an exception was thrown or not.

 /**
 * After advice
 *
 * @after F3\MyPackage\MyAspect->justAPointcut
 */
 public function myAfterAdvice(\F3\FLOW3\AOP\JoinPointInterface $joinPoint) {
 }

Example 10.14. Declaration of an after advice

4.5. Around advice
Finally, the around advice takes total control over the target method and intercepts it

completely. It may decide to call the original method or not and even modify the result of the

target method or return a completely different one. Obviously the around advice is the most

powerful and should only be used if the concern can't be implemented with the alternative

advice types. You might already guess how an around advice is declared:

 /**
 * Around advice
 *
 * @around F3\MyPackage\MyAspect->justAPointcut
 */
 public function myAroundAdvice(\F3\FLOW3\AOP\JoinPointInterface $joinPoint) {
 }

Example 10.15. Declaration of an around advice

5. Implementing advice
The final step after declaring aspects, pointcuts and advices is to fill the advices with life.

The implementation of an advice is located in the same method it has been declared. In that

regard, an aspect class behaves like any other object in FLOW3 – you therefore can take

advantage of dependency injection in case you need other objects to fulfill the task of your

advice.

5.1. Accessing join points
As you have seen in the previous section, advice methods always expect an argument

of the type \F3\FLOW3\AOP\JoinPointInterface. This join point object contains all

important information about the current join point. Methods like getClassName() or

getMethodArguments() let the advice method classify the current context and enable

you to implement advices in a way that they can be reused in different situations. For a full

description of the join point object refer to the API documentation.

5.2. Advice chains
Around advices are a special advice type in that they have the power to completely intercept

the target method. For any other advice type, the advice methods are called by the proxy

class one after another. In case of the around advice, the methods form a chain where each

link is responsible to pass over control to the next.

56

Figure 10.1. Control flow of an advice chain

5.3. Examples
Let's put our knowledge into practice and start with a simple example. First we would like to

log each access to methods within certain package. The following code will just do that:

57

namespace F3\MyPackage;

/**
 * A logging aspect
 *
 * @package MyPackage
 * @aspect
 */
class LoggingAspect {

 /**
 * @var \F3\FLOW3\Log\LoggerInterface A logger implementation
 protected $logger;

 /**
 * For logging we need a logger, which we will get injected automatically by
 * the Object Manager
 *
 * @param \F3\FLOW3\Log\SystemLoggerInterface $logger The System Logger
 * @return void
 */
 public function injectSystemLogger(\F3\FLOW3\Log\SystemLoggerInterface �
 $systemLogger) {
 $this->logger = $systemLogger;
 }

 /**
 * Before advice, logs all access to methods of our package
 *
 * @param \F3\FLOW3\AOP\JoinPointInterface $joinPoint: The current join point
 * @return void
 * @before method(F3\MyPackage\.*->.*())
 */
 public function logMethodExecution(\F3\FLOW3\AOP\JoinPointInterface $joinPoint) {
 $logMessage = 'The method ' . $joinPoint->getMethodName() . ' in class ' . �
 $joinPoint->getClassName() . ' has been called.';
 $this->logger->log($logMessage);
 }
}

Example 10.16. Simple logging with aspects

Note that we are using dependency injection for getting the system logger instance to stay

independent from any specific logging implementation. We don't have to care about the kind

of logger and where it comes from.

Finally an example for the implementation of an around advice: For a guest book, we want

to reject the last name “Sarkosh” (because it should be “Skårhøj”), every time it is submitted.

Admittedly you probably wouldn't implement this great feature as an aspect, but it's easy

enough to demonstrate the idea. For illustration purposes, we don't define the pointcut

expression in place but refer to a named pointcut.

58

namespace F3\MyPackage;

/**
 * A lastname rejection aspect
 *
 * @package MyPackage
 * @aspect
 */
class LastNameRejectionAspect {

 /**
 * A pointcut which matches all guestbook submission method invocations
 *
 * @pointcut method(\F3\Guestbook\SubmissionHandlingThingy->submit())
 */
 public function guestbookSubmissionPointcut() {}

 /**
 * Around advice, rejects the lastname "Sarkosh"
 *
 * @param \F3\FLOW3\AOP\JoinPointInterface $joinPoint The current join point
 * @return mixed Result of the target method
 * @around F3\MyPackage\LastNameRejectionAspect->guestbookSubmissionPointcut
 */
 public function rejectLastName(\F3\FLOW3\AOP\JoinPointInterface $joinPoint) {
 if ($joinPoint->getMethodArgument('lastName') == 'Sarkosh') {
 throw new Exception('Sarkosh is not a valid lastname - should be Skårhøj!');
 }
 $result = $joinPoint->getAdviceChain()->proceed($joinPoint);
 return $result;
 }
}

Example 10.17. Implementation of an around advice

Please note that if the last name is correct, we proceed with the remaining links in the advice

chain. This is very important to assure that the original (target-) method is finally called. And

don't forget to return the result of the advice chain ...

6. Introductions
Introductions (also known as Inter-type Declarations) allow to subsequently implement an

interface in a given target class. The (usually) newly introduced methods (required by the new

interface) can then be implemented by declaring an advice. If no implementation is defined,

an empty placeholder method will be generated automatically to satisfy the contract of the

introduced interface.

6.1. Declaring introductions
Like advices, introductions are declared by annotations. But in contrast to advices, the anchor

for an introduction declaration is a property of the aspect class. The annotation tag follows

this syntax:

@introduce NewInterfaceName, PointcutExpression

Although the PoincutExpression is just a normal pointcut expression, which may also

refer to named pointcuts, be aware that only expressions filtering for classes make sense.

You cannot use the method() pointcut designator in this context and will typically take the

class() designator instead.

The following example introduces a new interface NewInterface to the class OldClass

and also provides an implementation of the method newMethod.

59

namespace F3\MyPackage;

/**
 * An aspect for demonstrating introductions
 *
 * @package MyPackage
 * @aspect
 */
class IntroductionAspect {

 /**
 * Introduces \F3\MyPackage\NewInterface to the class \F3\MyPackage\OldClass:
 *
 * @introduce F3\MyPackage\NewInterface, class(F3\MyPackage\OldClass)
 */
 public $newInterface;

 /**
 * Around advice, implements the new method "newMethod" of the
 * "NewInterface" interface
 *
 * @param \F3\FLOW3\AOP\JoinPointInterface $joinPoint The current join point
 * @return void
 * @around method(F3\MyPackage\OldClass->newMethod())
 */
 public function newMethod(\F3\FLOW3\AOP\JoinPointInterface $joinPoint) {
 // We call the advice chain, in case any other advice is declared for
 // this method, but we don't care about the result.
 $someResult = $joinPoint->getAdviceChain->proceed($joinPoint);

 $a = $joinPoint->getMethodArgument('a');
 $b = $joinPoint->getMethodArgument('b');
 return $a + $b;
 }
}

Example 10.18. Declaring introductions

7. Implementation details
7.1. AOP proxy mechanism

The following diagram illustrates the building process of a proxy class:

60

Figure 10.2. Proxy building process

61

Chapter 11. Persistence Framework
1. Introductory Example

Let's look at the following example as an introduction to how FLOW3 handles persistence.

We have a domain model of a Blog, consisting of Blog, Post, Comment and Tag objects:

Figure 11.1. The objects of the Blog domain model

Connections between those objects are built by simple references in PHP, as a look at the

addPost() method of the Blog class shows:

/**
 * @param \F3\Blog\Domain\Post $post
 * @return void
 */
public function addPost(\F3\Blog\Domain\Post $post) {
 $this->posts[$post->getIdentifier()] = $post;
}

Example 11.1. The Blog's addPost() method

The same principles are applied to the rest of the classes, resulting in an object tree of a blog

object holding several posts, those in turn having references to their associated comments

and tags. But now we need to make sure the Blog and the data in it are still available the

next time we need them. In the good old days of programming you might have added some

ugly database calls all over the system at this point. In the currently widespread practice of

loving Active Record you'd still add save() methods to all or most of your objects. But can

it be even easier?

To access an object you need to hold some reference to it. You can get that reference by

creating an object or by following some reference to it from some object you already have.

This leaves you at a point where you need to find that "first object". This is done by using

a Repository. A Repository is the librarian of your system, knowing about all the objects

it manages. In our model the Blog is the entry point to our object tree, so we will add a

BlogRepository, allowing us to find Blogs by the criteria we need.

Now, before we can find a Blog, we need to create and save one. What we do is create

the object (using FLOW3's object factory) and add it to the BlogRepository. This will

automagically persist your Blog and you can retrieve it again later. No save() call needed.

Oh, and the posts, comments and tags in your Blog are persisted as well, of course.

62

For all that magic to work as expected, you need to give some hints. This doesn't mean you

need to write tons of XML, a few annotations in your code are enough:

/**
 * A Blog object
 *
 * @package Blog
 * @entity
 */
class Blog {

 /**
 * @var string
 */
 protected $title;

 /**
 * @var array
 */
 protected $posts = array();

 ...

}

Example 11.2. Persistence-related annotations in the Blog class

The first annotation to note is the @entity annotation, which tells the persistence framework

it needs to persist Blog instances if they have been added to a Repository. In the Blog class

we have some member variables, they are persisted as well by default. The persistence

framework knows their types by looking at the @var annotation you use anyway when

documenting your code (you do document your code, right?). In case of the $posts array the

persistence framework persists the objects held in that array as independent objects. Apart

from those annotations your domain object's code is completely unaware of the persistence

infrastructure.

Let's conclude by taking a look at the BlogRepository code:

/**
 * A BlogRepository
 *
 * @package Blog
 */
class BlogRepository extends \F3\FLOW3\Persistence\Repository {

 /**
 * Finds Blogs with a matching name.
 *
 * @param string $name
 * @return array
 */
 public function findByName($name) {
 $query = $this->createQuery();
 return $query->matching($query->equals('name', $name))->execute();
 }
}

Example 11.3. Code of a simple BlogRepository

As you can see we get away with very little code by simply extending the FLOW3-provided

repository class. Nice, eh? If you like to do things the hard way you can get away with

implementing \F3\FLOW3\Persistence\RepositoryInterface yourself.

63

2. On the priciples of DDD
From Evans, the rules we need to enforce include:

• The root Entity has global identity and is ultimately responsible for checking invariants.

• Root Entities have global identity. Entities inside the boundary have local identity, unique

only within the Aggregate.

• Nothing outside the Aggregate boundary can hold a reference to anything inside, except to

the root Entity. The root Entity can hand references to the internal Entities to other objects,

but they can only use them transiently (within a single method or block).

• Only Aggregate Roots can be obtained directly with database queries. Everything else

must be done through traversal.

• Objects within the Aggregate can hold references to other Aggregate roots.

• A delete operation must remove everything within the Aggregate boundary all at once.

• When a change to any object within the Aggregate boundary is committed, all invariants

of the whole Aggregate must be satisfied.

3. Persistence-related annotations
The following table lists all annotations used by the persistence framework with their name,

scope and meaning:

Annotation Scope Meaning

@entity Class Declares a class as an Entity.

@valueobject Class Declares a class as a Value Object, allowing the persistence

framework to reuse an existing object if one exists.

@var Variable Is used to detect the type a variable has.

@transient Variable Makes the persistence framework ignore the variable.

Neither will it's value be persisted, nor will it be touched during

reconstitution.

@uuid Variable Marks the variable as being the object uuid. This makes

the persistence backend use the value of this variable as

identifier for the internal representation of the object. You

must make sure your identifier is an UUID.

@identity Variable Marks the variable as being relevant for determining the

identity of an object in the domain.

Table 11.1. Persistence-related code annotations

4. Inside the Persistence Framework
To the domain code the persistence handling transparent, aside from the need to add a

few annotations. The custom repositories are a little closer to the inner workings of the

framework, but still the inner workings are very invisible. This is how it is supposed to be,

but a little understanding of how persistence works internally can help understand problems

and develop more efficient client code.

64

4.1. Persisting a domain object
After an object has been added to a repository it will be seen when FLOW3 calls

persistAll() at the end of a script run. Internally all instances implementing the

\F3\FLOW3\Persistence\RepositoryInterface will be fetched and asked for the

objects they hold. Those will then be handed to the persistence backend in use and

processed by it.

FLOW3 defines interfaces for persistence backends and queries, the details of how objects

are persisted and queried are up to the persistence backend implementation. Have a look

at the documentatoin of the respective package for more information. The following diagram

shows (most of) the way an object takes from creation until it is persisted when using the

TYPO3 Content Repository:

Figure 11.2. Object persistence process

Keep in mind that the diagram omits some details like dirty checking on objects and how

exactly objects and their properties are stored in the Content Repository.

4.2. Querying the storage backend
As we saw in the introductory example there is a query mechanism available that provides

easy fetching of objects through the persistence framework. You ask for instances of a

specific class that match certain filters and get back an array of those reconstituted objects.

Here is a diagram of the internal process when using the TYPO3 Content Repository as

persistence backend:

65

Figure 11.3. Object querying and reconstitution process

For the developer the complexity is hidden between the query's execute() method and

the array of objects being returned. The QOMFactory, "right" Query and QueryResult

objects are part of the standard JSR-283 API, whereas QueryFactory, "left" Query and

DataMapper are part of the FLOW3 persistence backend implementation that comes with

the TYPO3 Content Repository.

66

Appendix A. Coding Guidelines
Coding Standards are an important factor for achieving a high code quality. A common visual

style, naming conventions and other technical settings allow us to produce a homogenous

code which is easy to read and maintain. However, not all important factors can be covered

by rules and coding standards. Equally important is the style in which certain problems are

solved programmatically - it's the personality and experience of the individual developer

which shines through and ultimately makes the difference between technically okay code or

a well considered, mature solution.

These guidelines try to cover both, the technical standards as well as giving incentives for

a common development style. These guidelines must be followed by everyone who creates

code for the FLOW3 core. Because TYPO3 is based on FLOW3, it follows the same principles

- therefore, whenever we mention FLOW3 in the following sections, we equally refer to

TYPO3. We hope that you feel encouraged to follow these guidelines as well when creating

your own packages and FLOW3 based applications.

1. Code formatting and layout
aka "beautiful code"

The visual style of programming code is very important. In the TYPO3 project we want many

programmers to contribute, but in the same style. This will help us to:

• Easily read/understand each others code and consequently easily spot security problems

or optimization opportunities

• It is a signal about consistency and cleanliness, which is a motivating factor for

programmers striving for excellence

Some people may object to the visual guidelines since everyone has his own habits. You will

have to overcome that in the case of FLOW3; the visual guidelines must be followed along

with coding guidelines for security. We want all contributions to the project to be as similar

in style and as secure as possible.

1.1. General considerations
• Almost every PHP file in FLOW3 contains exactly one class and does not output anything

if it is called directly. Therefore you start your file with a <?php tag and end it with the

closing ?>.

• Every file must contain a header stating encoding, namespace, copyright and licensing

information

1. Declare your namespace. The namespace must start with "F3"!

2. Because it is likely that more than one person will work on a class in the long run,

we recommend adding a copyright statement like “Copyright belongs to the respective

authors” and add yourself to the list of authors for the methods you implemented or

changed (significantly).

3. The copyright header itself must not start with /**, as this may confuse documentation

generators!

67

<?php
declare(ENCODING = 'utf-8');
namespace F3\Your\Stuff\Here;

/* *
 * This script belongs to the FLOW3 framework. *
 * *
 * It is free software; you can redistribute it and/or modify it under *
 * the terms of the GNU Lesser General Public License as published by the *
 * Free Software Foundation, either version 3 of the License, or (at your *
 * option) any later version. *
 * *
 * This script is distributed in the hope that it will be useful, but *
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN- *
 * TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser *
 * General Public License for more details. *
 * *
 * You should have received a copy of the GNU Lesser General Public *
 * License along with the script. *
 * If not, see http://www.gnu.org/licenses/lgpl.html *
 * *
 * The TYPO3 project - inspiring people to share! *
 * */

Example A.1. The FLOW3 standard file header

• Code lines are of arbitrary length, no limitations to 80 characters or something similar (wake

up, graphical displays have been available for decades now...)

• Lines end with a newline a.k.a chr(10) - UNIX style

• Files must be encoded in UTF-8

Make sure you use the correct license and mention the

correct package in the header, See http://forge.typo3.org/wiki/flow3-overview/

Licensing_boilerplates_to_use_with_your_code for some boilerplate text.

1.2. Indentation and line formatting
Indentation is done with tabs - and not spaces! The beginning of a line is the only place where

tabs are used, in all other places use spaces. Always trim whitespace off the end of a line.

Here's a code snippet which shows the correct usage of tabs and spaces:

/**
 * Returns the name of the currently set context.
 *
 * @return string Name of the current context
 * @author Your Name <your@email.here>
 */
public function getContextName() {
» return $this->contextName;
}

Example A.2. Correct use of tabs and spaces

There seem to be very passionate opinions about whether TABs or spaces should be

used for indentation of code blocks in the scripts. If you'd like to read more about this

religious discussion, you find some nice arguments in the Joels on Software forum [http://

discuss.fogcreek.com/joelonsoftware/default.asp?cmd=show&ixPost=3978].

http://forge.typo3.org/wiki/flow3-overview/Licensing_boilerplates_to_use_with_your_code
http://forge.typo3.org/wiki/flow3-overview/Licensing_boilerplates_to_use_with_your_code
http://discuss.fogcreek.com/joelonsoftware/default.asp?cmd=show&ixPost=3978
http://discuss.fogcreek.com/joelonsoftware/default.asp?cmd=show&ixPost=3978
http://discuss.fogcreek.com/joelonsoftware/default.asp?cmd=show&ixPost=3978

68

1.3. Naming
Naming is a repeatedly undervalued factor in the art of software development. Although

everybody seems to agree on that nice names are a nice thing to have, most developers

choose cryptic abbreviations in the end (to save some typing). Beware that we TYPO3 core

developers are very passionate about naming (some people call it fanatic, well ...). In our

opinion spending 15 minutes (or more ...) just to find a good name for a method is well spent

time! There are zillions of reasons for using proper names and in the end they all lead to

better readable, manageable, stable and secure code.

• As a general note, english words (or abbreviations if neccessary) must be used for all class

names, method names, comments, variables names, database table and field names.

Although PHP6 allows for using funny japanese, tibetian or don't-know-what characters,

the consensus is that english is much better to read for the most of us.

• If acronyms or abbreviations are embedded in names, keep them in the case they usually

are, i.e. keep URL uppercase, also when used in a method name like getURLForLink(),

ACMEManager etc.

1.3.1. Package names
All package names are written in UpperCamelCase. In order to avoid problems with different

filesystems, only the characters a-z, A-Z and 0-9 are allowed for package names – don't use

special characters.

1.3.2. Namespace names
Only the characters a-z, A-Z and 0-9 are allowed for namespace names – don't use special

characters. All namespace names are written in UpperCamelCase, all uppercase names

are allowed for well established abbreviations.

Note

When specifying class names to PHP, always reference the global namespace

inside namespaced code by using a leading backslash. When referencing

a class name inside a string (e.g. given to the create-Method of the

ObjectFactory, in pointcut expressions or in YAML files), never use a leading

backslash. This follows the native PHP notion of names in strings always being

seen as fully qualified.

1.3.3. Class names
Only the characters a-z, A-Z and 0-9 are allowed for class names – don't use special

characters.

All class names are written in UpperCamelCase, all uppercase names are allowed for well

established abbreviations. Class names must be nouns, never adjectives.

The name of abstract classes should start with the word "Abstract".

A few examples follow:

69

• \F3\FLOW3\Object

• \F3\FLOW3\Object\Manager

• \F3\MyPackage\MyObject\MySubObject

• \F3\MyPackage\MyObject\MyHTMLParser

• \F3\Foo\Controller\DefaultController

• \F3\MyPackage\MyObject\AbstractLogger

Example A.3. Correct naming of classes

• \myClass

• \F3\Urlwrapper

• \someObject\classname

• \F3\MyPackage\MyObjectMySubObject

Example A.4. Incorrect naming of classes

1.3.4. Interface names
Only the characters a-z, A-Z and 0-9 are allowed for interface names – don't use special

characters.

All interface names are written in UpperCamelCase, all uppercase names are allowed for

well established abbreviations. Interface names must be adjectives or nouns and have the

Interface suffix. A few examples follow:

• \F3\FLOW3\Object\ObjectInterface

• \F3\FLOW3\Object\ManagerInterface

• \F3\MyPackage\MyObject\MySubObjectInterface

• \F3\MyPackage\MyObject\MyHTMLParserInterface

Example A.5. Correct naming of interfaces

• \myInterface

• \F3\Urlwrapper

• \IsomeObject\classname

• \F3\FLOW3\Object\Manager\Interface

Example A.6. Incorrect naming of interfaces

1.3.5. Exception names
Exception naming basically follows the rules for naming classes. There are two possible

types of exceptions: Generic exceptions and specific exceptions. Generic exceptions should

be named "Exception" preceeded by their namespace. Specific exceptions should reside in

their own sub-namespace and must not contain the word Exception.

70

• \F3\FLOW3\Object\Exception

• \F3\FLOW3\Object\Exception\InvalidClassName

• \F3\MyPackage\MyObject\Exception

• \F3\MyPackage\MyObject\Exception\OutOfCoffee

Example A.7. Correct naming of exceptions

1.3.6. Method names
All method names are written in lowerCamelCase, all uppercase names are allowed for well

established abbreviations. In order to avoid problems with different filesystems, only the

characters a-z, A-Z and 0-9 are allowed for method names – don't use special characters.

Make method names descriptive, but keep them concise at the same time. Constructors must

always be called __construct(), never use the class name as a method name.

A few examples:

• myMethod()

• someNiceMethodName()

• betterWriteLongMethodNamesThanNamesNobodyUnderstands()

• singYMCALoudly()

• __construct()

Example A.8. Correct naming of methods

1.3.7. Variable names
Variable names are written in lowerCamelCase and should be

• self-explaining

• not shortened beyond recognition, but rather longer if it makes their meaning clearer

The following example shows two variables with the same meaning but different naming.

You'll surely agree the longer versions are better (don't you ...?).

• $singletonObjectsRegistry

• $argumentsArray

• $aLotOfHTMLCode

Example A.9. Correct naming of variables

• $sObjRgstry

• $argArr

• $cx

Example A.10. Incorrect naming of variables

As a special exception you may use variable names like $i, $j and $k for numeric indexes

in for loops if it's clear what they mean on the first sight. But even then you might want to

avoid them.

71

1.3.8. Constant names
All constant names are written in UPPERCASE. This includes TRUE, FALSE and NULL. Words

can be separated by underscores - you can also use the underscore to group constants

thematically:

• STUFF_LEVEL

• COOLNESS_FACTOR

• PATTERN_MATCH_EMAILADDRESS

• PATTERN_MATCH_VALIDHTMLTAGS

Example A.11. Correct naming of constants

It is, by the way, a good idea to use constants for defining regular expression patterns (as

seen above) instead of defining them somewhere in your code.

1.3.9. File names
These are the rules for naming files:

• All file names are UpperCamelCase.

• Class and interface files are named according to the class or interface they represent

• Each file must contain only one class or interface

• Names of files containing code for unit tests must be the same as the class which is tested,

appended with "Test.php".

• Files are placed in a directory structure representing the namespace structure.

Here are some examples:

• TemplateEngine/TemplateEngineInterface.php

Contains the interface \F3\TemplateEngine\TemplateEngineInterface which is

part of the package \F3\TemplateEngine

• Error/RuntimeException.php

Contains the \F3\Error\RuntimeException being a part of the package \F3\Error

• DataAccess/Manager.php

Contains class \F3\DataAccess\Manager which is part of the package \F3\DataAccess

• FLOW3/Package/Manager.php

Contains the class \F3\FLOW3\Package\Manager which is part of the package

\F3\FLOW3

• Package/ManagerTest.php

Contains the class \F3\FLOW3\Package\ManagerTest which is a test case for

PHPUnit.

Example A.12. File naming in FLOW3

72

1.4. PHP code formatting

1.4.1. Strings
In general, we use single quotes to enclose literal strings:

$vision = 'Inspiring people to share';

Example A.13. String literals

If the string itself contains single quotes or apostrophes, we use double quotes:

$message = "'Kasper' is the name of the friendly ghost.";

Example A.14. String literals enclosed by double quotes

If you'd like to insert values from variables, we prefer to concatenate strings:

$message = 'Hey ' . $name . ', you look ' . $look . ' today!';

Example A.15. Variable substitution

A space must be inserted before and after the dot for better readability:

$vision = 'Inspiring people ' . 'to share.';

Example A.16. Concatenated strings

You may break a string into multiple lines if you use the dot operator. You'll have to indent

each following line to mark them as part of the value assignment:

$vision = 'Inspiring' .
 'people ' .
 'to ' .
 'share';

Example A.17. Multi-line strings

1.4.2. Arrays

1.4.3. Classes
...

namespace F3\MyPackage;

class MyObject {

}

Example A.18. Classes

1.4.4. Functions and methods

73

1.4.5. if statements

• There needs to be one space between the if keyword and the opening brace "(" of the

test expression

• After the closing brace ")" of the test expression follows one space before the curly brace "{"

• else and elseif are on the same line as their corresponding curly braces

if ($something || $somethingElse) {
 doThis();
} else {
 doSomethingElse();
}

if (allGoesWrong() === TRUE) throw new \Exception('Hey, all went wrong!', 123);

if (weHaveALotOfCriteria() === TRUE
 && notEverythingFitsIntoOneLine() === TRUE
 || youJustTendToLikeIt() === TRUE) {
 doThis();

} else {
 ...
}

Example A.19. if statements

2. Documentation
All code must be documented with inline comments. The syntax is that known from the

Java programming language (JavaDoc). This way code documentation can automatically

be generated using tools like phpDocumentor or Doxygen. The "official" tool used is

phpDocumentor1, so syntax and documentation usage are chosen to work best with it.

2.1. Documentation blocks
A file can contain different documentation blocks, relating to the file itself, the class in the

file and finally the members of the class. A documentation block is always used for the entity

it precedes.

2.1.1. File documentation
The first documentation block in the file is essential for defining the package the file and

it's contents belong to. Although it would not be strictly needed to have the file level

documentation block (because each file contains only one class in FLOW3), we still use it

because it

• avoids warnings when rendering the documentation

• makes sure that even code outside of classes is assigned to the correct package and

documented correctly

That means that each file must contain a documentation block like shown below, right below

the header stating the license and before any require/include calls:

1We look into Doxygen as well, currently both tools have problems with using namespaces in PHP.

74

/**
 * @package [packagename]
 * @subpackage [subpackage name if necessary]
 * @version Id
 */

Example A.20. Standard file level documentation block

The package and version tag are mandatory, the subpackage tag is optional.

Id, Subversion and keyword expansion
The Id in the version tag will be expanded with information about the file

version by Subversion. This so-called keyword expansion needs to be explicitly

enabled, though! We recommend to put this into your ~.subversion/config

file:

[miscellany]

global-ignores = #*# *.rej *.orig *.bak *~ .*

log-encoding = utf-8

enable-auto-props = yes

[auto-props]

*.php = svn:keywords=Id Revision

*.yaml = svn:keywords=Id Revision

Example A.21. Suggested configuration for Subversion in ~/.subversion/config

This does a little more than just enable the keyword expansion, it also sets the

character encoding for the log messages and makes Subversion ignore some

standard backup and metadata filenames.

2.1.2. Class documentation
Classes have their own documentation block describing the classes purpose, assigning a

package and subpackage. Very often the code within a class is expanded and modified

by a number of authors. We therefore recommend to add the names of the developers to

the method documentation. An exception should be the documentation for interfaces where

you list all authors in the interface documentation. Exceptions itself never have an author

annotation.

/**
 * First sentence is short description. Then you can write more, just as you like
 *
 * Here may follow some detailed description about what the class is for.
 *
 * Paragraphs are seperated by a empty line.
 *
 * @package [packagename]
 * @subpackage [subpackage name if necessary]
 * @version Id
 * @license http://www.gnu.org/licenses/lgpl.html GNU Lesser General Public License, version 3 or later
 */
class SomeClass {
 ...

Example A.22. Standard class documentation block

75

/**
 * First sentence is short description. Then you can write more, just as you like
 *
 * Here may follow some detailed description about what the interface is for.
 *
 * Paragraphs are seperated by a empty line.
 *
 * @package [packagename]
 * @subpackage [subpackage name if necessary]
 * @version Id
 * @license http://www.gnu.org/licenses/lgpl.html GNU Lesser General Public License, version 3 or later
 * @author Your Name <your@email.here>
 */
interface SomeInterface {
 ...

Example A.23. Standard interface documentation block

/**
 * First sentence is short description. Then you can write more, just as you like
 *
 * Here may follow some detailed description about what the interface is for.
 *
 * Paragraphs are seperated by a empty line.
 *
 * @package [packagename]
 * @subpackage [subpackage name if necessary]
 * @version Id
 * @license http://www.gnu.org/licenses/lgpl.html GNU Lesser General Public License, version 3 or later
 */
class SomeException extends \Exception {
 ...

Example A.24. Standard exception documentation block

Additional tags or annotations, such as @see or @aspect, can be added as needed.

2.1.3. Documenting variables, constants, includes
Properties of a class should be documented as well. We use the short version for

documenting them:

/**
 * A short description, very much recommended
 * @var string
 */
protected $title = 'Untitled';

Example A.25. Standard variable documentation block

2.1.4. Method documentation
For a method, at least all parameters and the return value must be documented. Please also

add your name by using the @author tag. The @access tag must not be used as it makes

no sense (we're using PHP >= 5 for some reason, don't we?)

76

/**
 * A description for this method
 *
 * Paragraphs are seperated by a empty line.
 *
 * @param \F3\FLOW3\Log\LoggerInterface $logger A logger
 * @param string $someString This parameter should contain some string
 * @return void
 * @author Your Name <your@email.here>
 */
public function __construct(\F3\FLOW3\Log\LoggerInterface $logger, $someString) {
 ...

Example A.26. Standard method documentation block

A special note about the @param tags: The parameter type and name are seperated by one

space, not aligned. Do not put a colon after the parameter name. Always document the return

type, even if it is void - that way it is clearly visible it hasn't just been forgotten.

2.2. Documentation tags
There are quite a few documentation tags that can be used. Here is a list of tags that can

and should be used within the TYPO3 project:

• @author

• @copyright

• @deprecated

• @example

• @filesource

• @global

• @ignore

• @internal

• @license

• @link

• @package

• @param

• @return

• @see

• @since

• @subpackage

• @todo

• @uses

• @var

• @version

Some are useless for PHP5 and PHP6, such as the tag for declaring a variable or method

private:

• @access

77

Important
If you are unsure about the meaning or ose of those tags, look them up in the

phpDocumentor manual, rather than doing guesswork.

Note
There are more tags which are used in FLOW3, however their purpose is not

documention but configuration. Currently annotations are also used for defining

aspects and advices for the AOP framework as well as for giving instructions to

the Persistence framework.

3. Coding
3.1. Overview

This section gives you an overview of FLOW3's coding rules and best practices.

3.2. General PHP best practices
• All code should be object oriented. This means there should be no functions outside

classes if not absolutely necessary. If you need a "container" for some helper methods,

consider creating a static class.

• All code must make use of PHP5 / PHP6 advanced features for object oriented

programming.

• Use PHP namespaces (see http://www.php.net/manual/language.namespaces.php)

• Always declare the scope (public, protected, private) of methods and member variables

• Make use of iterators and exceptions, have a look at the SPL (see http://www.php.net/

manual/ref.spl.php and http://www.php.net/~helly/php/ext/spl/)

• Make use of type-hinting wherever possible (see http://www.php.net/manual/

language.oop5.typehinting.php)

• Always use <?php as opening tags (never only <?)

• Add an encoding declaration as the first line of your PHP code, followed by the namespace

declaration. For TYPO3 the encoding must be UTF-8

<?php
declare(ENCODING = 'utf-8');
namespace F3\Your\Stuff\Here;

...

Example A.27. Encoding statement for .php files

3.2.1. Comments
In general, comments are a good thing and we strive for creating a well-documented source

code. However, inline comments can often be a sign for a bad code structure or method

naming.2As an example, consider the following code:

2This is also referred to as a bad "smell" in the theory of Refactoring. We highly recommend reading "Refactoring" by Martin

Fowler - if you didn't already.

http://www.php.net/manual/language.namespaces.php
http://www.php.net/manual/ref.spl.php
http://www.php.net/manual/ref.spl.php
http://www.php.net/~helly/php/ext/spl/
http://www.php.net/manual/language.oop5.typehinting.php
http://www.php.net/manual/language.oop5.typehinting.php

78

 // We only allow valid persons:
if (is_object($p) && strlen($p->lastN) > 0 && $p->hidden === FALSE && $this->environment->moonPhase === MOON_LIB::CRESCENT) {
 $xmM = $thd;
}

Example A.28. Bad coding smell: Comments

This is a perfect case for the refactoring technique "extract method": In order to avoid the

comment, create a new method which is as explanatory as the comment:

if ($this->isValidPerson($person) {
 $xmM = $thd;
}

Example A.29. Smells better!

Bottom line is: You may (and are encouraged to) use inline comments if they support the

readability of your code. But always be aware of possible design flaws you probably try to

hide with them.

3.3. Error handling and exceptions
FLOW3 makes use of a hierarchy for its exception classes. The general rule is to throw

preferably specific exceptions and usually let them bubble up until a place where more

general exceptions are catched. Consider the following example:

Some method tried to retrieve an object from the object manager. However, instead

of providing a string containing the object name, the method passed an object (of

course not on purpose - something went wrong). The object manager now throws an

InvalidObjectName exception. In order to catch this exception you can, of course, catch

it specifically - or only consider a more general Object exception (or an even more general

FLOW3 exception). This all works because we have the following hierarchy:

+ \F3\FLOW3\Exception

 + \F3\FLOW3\Object\Exception

 + \F3\FLOW3\Object\Exception\InvalidObjectName

3.3.1. Throwing an exception
When throwing an exception, make sure to provide a clear error message and an error code

being the unix timestamp of when you write the throw statement. That error code must be

unique, so watch out when doing copy and paste!

For every exception there should be a page on the TYPO3 wiki, as exception messages link

to that page, identified by the error code (unix timestamp).

3.4. Cross platform issues

	FLOW3
	Table of Contents
	Chapter 1. Introduction
	1. Overview

	Chapter 2. FLOW3 Bootstrap
	1. Application Context
	2. Boot Sequence

	Chapter 3. Packages
	1. Package Locations
	1.1. Global and Local Packages
	1.2. Additional Package Locations
	1.3. Loading Order

	2. Package Directory Layout
	3. Package Keys
	4. Importing and Installing Packages
	5. Package Manager
	6. Creating a New Package
	7. Package Meta Information

	Chapter 4. Object Framework
	1. Creating Objects
	1.1. Object Scopes
	1.2. Creating Prototypes
	1.3. Retrieving Singletons
	1.4. Passing constructor arguments
	1.5. Lifecycle methods

	2. Object Registration and API
	2.1. Object Framework API
	2.2. Object names and types

	3. Object dependencies
	3.1. Dependency Injection
	3.1.1. Constructor Injection
	3.1.2. Setter Injection
	3.1.3. Property Injection
	3.1.4. Settings Injection

	3.2. Required and Optional Dependencies
	3.3. Dependency Resolution

	4. Configuring objects
	4.1. Configuration Sources
	4.1.1. Objects.yaml
	4.1.2. Objects.php
	4.1.3. Annotations

	4.2. Overriding Object Implementations
	4.3. Configuring Injection
	4.3.1. Injection Values
	4.3.2. Constructor Injection
	4.3.3. Setter Injection
	4.3.4. Injection of Objects Specified in Settings
	4.3.5. Nested Object Configuration
	4.3.6. Disabling Autowiring

	4.4. Custom Factories
	4.5. Name of Lifecycle Methods

	Chapter 5. Configuration Framework
	1. Configuration Files
	1.1. File Locations

	2. Defining Configuration
	2.1. Configuration Formats
	2.2. YAML
	2.3. PHP
	2.4. Constants (special case)

	3. Accessing Configuration
	3.1. Working with Settings
	3.2. Manually Retrieving Settings
	3.3. Working with other configuration

	Chapter 6. Resource Manager
	Chapter 7. MVC Framework
	1. Introduction
	1.1. Model-View-Controller
	1.2. Other Patterns Used
	1.3. Hello World!
	1.4. Recommended File Structure
	1.5. From the URI to the view

	2. Request and Response
	2.1. Request Processing Overview
	2.2. Request Handler
	2.3. Request Builder
	2.4. Request Processors
	2.5. Request Dispatcher
	2.6. Request Types
	2.6.1. Web Request / Response
	2.6.2. CLI Request / Response
	2.6.3. AJAX Request / Response

	3. Controller
	3.1. Action Controller
	3.1.1. Initialization Methods
	3.1.2. Configuration
	3.1.3. Supported Request Types
	3.1.4. Arguments
	3.1.5. Action Methods
	3.1.6. Action View

	3.2. Other Controllers
	3.2.1. Abstract Controller
	3.2.2. Request Handling Controller
	3.2.3. Default Controller

	4. View
	4.1. Template View
	4.2. Special Views
	4.2.1. Default View
	4.2.2. Empty View

	5. Helpers
	6. Model
	7. Routing
	8. CLI request handling

	Chapter 8. Cache Framework
	Chapter 9. Error and Exception Handling
	Chapter 10. AOP Framework
	1. Introduction
	1.1. AOP concepts and terminology
	1.2. FLOW3 AOP concepts
	1.3. Implementation overview

	2. Aspects
	3. Pointcuts
	3.1. Pointcut expressions
	3.2. Pointcut designators
	3.2.1. method()
	3.2.2. class()
	3.2.3. within()
	3.2.4. classTaggedWith()
	3.2.5. methodTaggedWith()
	3.2.6. setting()
	3.2.7. filter()

	3.3. Combining pointcut expressions

	4. Declaring advice
	4.1. Before advice
	4.2. After returning advice
	4.3. After throwing advice
	4.4. After advice
	4.5. Around advice

	5. Implementing advice
	5.1. Accessing join points
	5.2. Advice chains
	5.3. Examples

	6. Introductions
	6.1. Declaring introductions

	7. Implementation details
	7.1. AOP proxy mechanism

	Chapter 11. Persistence Framework
	1. Introductory Example
	2. On the priciples of DDD
	3. Persistence-related annotations
	4. Inside the Persistence Framework
	4.1. Persisting a domain object
	4.2. Querying the storage backend

	Appendix A. Coding Guidelines
	1. Code formatting and layout
	1.1. General considerations
	1.2. Indentation and line formatting
	1.3. Naming
	1.3.1. Package names
	1.3.2. Namespace names
	1.3.3. Class names
	1.3.4. Interface names
	1.3.5. Exception names
	1.3.6. Method names
	1.3.7. Variable names
	1.3.8. Constant names
	1.3.9. File names

	1.4. PHP code formatting
	1.4.1. Strings
	1.4.2. Arrays
	1.4.3. Classes
	1.4.4. Functions and methods
	1.4.5. if statements

	2. Documentation
	2.1. Documentation blocks
	2.1.1. File documentation
	2.1.2. Class documentation
	2.1.3. Documenting variables, constants, includes
	2.1.4. Method documentation

	2.2. Documentation tags

	3. Coding
	3.1. Overview
	3.2. General PHP best practices
	3.2.1. Comments

	3.3. Error handling and exceptions
	3.3.1. Throwing an exception

	3.4. Cross platform issues

