
TYPO3.Flow - Feature # 26943

Status: Needs Feedback Priority: Should have
Author: Kevin Ulrich Moschallski Category: I18n
Created: 2011-05-20 Assigned To: Karsten Dambekalns
Updated: 2013-05-21 Due date:
PHP Version:
Has patch: No
Complexity:
Subject: Add i18n support to domain models
Description

Hi,

i found a doctrine Behavioral Extension which support annotation bases translation for domain models. Look at it here:

http://www.doctrine-project.org/blog/doctrine2-behavioral-extensions

It also has another interesting extension for updating a timestamp property every time an property is changed in a model. Don't know
if FLOW3 supports something already, just for notice.

I tried to implement this extension myself in the EntityManagerFactory, but without luck. But i think i18n support for domain models is a
major feature missing for beta1.

Regards,
Kevin

History
#1 - 2011-08-04 08:50 - Sebastian Kurfuerst
- Tracker changed from Bug to Feature

#2 - 2011-11-22 00:22 - Karsten Dambekalns
- Category set to I18n
- Priority changed from Must have to Should have
- Target version set to 1.1
- Has patch set to No

#3 - 2012-05-07 22:31 - Karsten Dambekalns
- Status changed from New to Needs Feedback
- Assigned To set to Karsten Dambekalns

The major question to answer before this can be implemented is how it should be used from a developers point of view. How would you like to handle
i18n in your models?

#4 - 2012-05-09 22:19 - Alexander Berl

What I would need, is for one or more translations of an object property to be set with a web form.
The use case would be for example a shop system, where the owner can create products in multiple languages without having to switch language
between updates.

2015-08-03 1/2

http://www.doctrine-project.org/blog/doctrine2-behavioral-extensions

As a developer I would then like to be able to just create a form that looks somewhere like this:

<f:form action="create" name="product" object="{product}">
 English name: <f:form.textfield property="name" locale="en" />
 German name: <f:form.textfield property="name" locale="de" />
 ...
</f:form>

Alternatively, the locale could be part of the property path maybe, though that would not be the cleanest solution. On the other hand it also provides an
easy option of displaying multiple translations of one property in a single template without having to use viewhelpers.

<div>English name: {product.en.name}</div>
<div>German name: {product.de.name}</div>

As I understand the behavorial extensions, it would not be able to set multiple translations without persisting the entities inbetween, e.g.:

$article->setTranslatableLocale('de_de'); // change locale
$article->setTitle('my title in de');
$article->setContent('my content in de');

$article->setTranslatableLocale('en_US'); // change locale
$article->setTitle('my title in en');
$article->setContent('my content in en');

This would lead to only the english translation being persisted, unless an explicit persist call is done between. A solution could possibly be to have a
translation aspect, that changes setters/getters to write to/read from a hashmap of locale->value and having setTranslatableLocale change the current
hashmap index.

Other than that, being able to to just use normal getters/setters of an entity together with an setLocale call seems like a perfectly transparent way of
handling translations in Code.

I also like the timestampable extension, though the same can be achieved with database triggers, it makes sense to have such behaviour abstracted
away from the db in a good DDD manner.

#5 - 2012-05-21 16:18 - Karsten Dambekalns
- Target version changed from 1.1 to 2.0 beta 1

#6 - 2012-12-10 13:31 - Karsten Dambekalns
- Target version changed from 2.0 beta 1 to 2.1

#7 - 2013-05-21 13:28 - Robert Lemke
- Target version deleted (2.1)

2015-08-03 2/2

