
TYPO3.Flow - Feature # 31788

Status: Rejected Priority: Should have
Author: rottenrice no-lastname-given Category: Reflection
Created: 2011-11-13 Assigned To: Karsten Dambekalns
Updated: 2012-03-07 Due date:
PHP Version:
Has patch: No
Complexity:
Subject: [PERFORMANCE] cache implementation for AnnotationReader in Flow3AnnotationDriver
Description

doctrine has classes to cache the parsed annotations. with cached annotations you can boost the parsetime by ~200ms (=15%, tested
with TYPO3.Blog).

some caching strategies:

$this->reader = new \Doctrine\Common\Annotations\CachedReader(
 new \Doctrine\Common\Annotations\IndexedReader(new \Doctrine\Common\Annotations\AnnotationReader()),
 new \Doctrine\Common\Cache\ApcCache()
);

$this->reader = new \Doctrine\Common\Annotations\CachedReader(
 new \Doctrine\Common\Annotations\IndexedReader(new \Doctrine\Common\Annotations\AnnotationReader()),
 new \Doctrine\Common\Cache\ArrayCache()
);

$this->reader = new \Doctrine\Common\Annotations\FileCachedReader(
 new \Doctrine\Common\Annotations\IndexedReader(new \Doctrine\Common\Annotations\AnnotationReader()),
 CACHING_DIR
);

it would be better to use the Objects.yaml to set the caching strategy instead of using __construct()

/**
 * @var \Doctrine\Common\Annotations\AnnotationReader
 */
protected $reader;

i think it is better to use the interface \Doctrine\Common\Annotations\Reader
--
class: TYPO3\FLOW3\Persistence\Doctrine\Mapping\Driver\Flow3AnnotationDriver

History
#1 - 2011-11-25 11:32 - Christopher Hlubek

+1 for the interface. We should implement a custom CachedReader using the FLOW3 caching framework. Should be fairly easy.

2015-08-03 1/2

#2 - 2011-12-14 15:40 - Karsten Dambekalns
- Category set to Reflection
- Status changed from New to Needs Feedback
- Assigned To set to Karsten Dambekalns

Christopher Hlubek wrote:

+1 for the interface. We should implement a custom CachedReader using the FLOW3 caching framework. Should be fairly easy.

The strategy currently is to cache the results the ReflectionService builds with the reader. No doubled caching, if it can be avoided.

#3 - 2012-03-07 16:07 - Karsten Dambekalns
- Status changed from Needs Feedback to Rejected

Recent improvements have shown the caching we have in place does the job.

2015-08-03 2/2

