
TYPO3.Flow - Feature # 34133

Status: New Priority: Could have
Author: Jacob Floyd Category: Property
Created: 2012-02-21 Assigned To:
Updated: 2012-02-21 Due date:
PHP Version:
Has patch: No
Complexity:
Subject: RFC: Handle Semicolons in Path part of URIs as Scoped Path Parameters
Description

Scoped Path Parameters
The URI RFCs hint at what I think will make an awesome, unique, feature for Flow3, and Typo3 Phoenix: Scoped Path Parameters.
It's a powerful feature that could allow all sorts of search faceting, matrices, or scoped parameters available for use in packages.

One of the possible uses for a path parameter in Typo3 might be to view historical versions of pages or branches of the page tree.
You could set the version parameter on a particular part of the hierarchical path (not necessarily the final segment that identifies the
page) and get past published versions of a page in that branch. Workspaces are great for queuing future work and pushing it through
the required workflow stages, but workspaces are awkward for managing past versions. But I digress - what exactly is a path
parameter?

What is a Path Parameter?
A URI path parameter is part of a path segment that occurs after its name. Path parameters offer a unique opportunity to
control the representations of resources. Since they can't be manipulated by standard Web forms, they have to be
constructed out of band. Since they're part of the path, they're sequential, unlike query strings. Most importantly, however,
their behaviour is not explicitly defined. - HTTP Path Parameter Syntax

Consider the latest version of the URI spec (3986) which says:

URI producing applications
often use the reserved characters allowed in a segment to delimit
scheme-specific or dereference-handler-specific subcomponents. For
example, the semicolon (";") and equals ("=") reserved characters are
often used to delimit parameters and parameter values applicable to
that segment. The comma (",") reserved character is often used for
similar purposes. For example, one URI producer might use a segment
such as "name;v=1.1" to indicate a reference to version 1.1 of
"name", whereas another might use a segment such as "name,1.1" to
indicate the same. Parameter types may be defined by scheme-specific
semantics, but in most cases the syntax of a parameter is specific to
the implementation of the URI's dereferencing algorithm.
- 3986

Though 3986 has an EBNF definition that allows for parameters in the path (like "name;v=1.1"), I think it's clearer to see in the
previous version (2396) where it shows that each path_segment (separated by a "/" can be followed by parameters.
[...]

Examples
So, In a path like /foo/bar/baz, you could add parameters that apply to a particular branch of the page tree:
/foo;v=1.1/bar;authgroup=employee/baz;views=map,calendar

This means that http://www.blah.com/some;param1=foo/crazy;param2=bar/path.html is a perfectly valid url (see this article and this
page on the subject).

Other examples

2015-08-03 1/4

http://www.w3.org/DesignIssues/MatrixURIs.html
http://doriantaylor.com/policy/http-url-path-parameter-syntax
http://datatracker.ietf.org/doc/rfc3986/
http://tools.ietf.org/html/rfc3986#section-3.3
http://datatracker.ietf.org/doc/rfc3986/
http://datatracker.ietf.org/doc/rfc2396/
http://www.skorks.com/2010/05/what-every-developer-should-know-about-urls/
http://doriantaylor.com/policy/http-url-path-parameter-syntax
http://doriantaylor.com/policy/http-url-path-parameter-syntax

 - /products;filter=family-friendly/videos;rating=pg?q=dragon

 - /foo/abc/bar/def
/foo;v=2.8/abc/bar/def;diff=with-current
/foo;L=en/abc/bar;L=de/def
/foo/abc;w=draft/bar/def;diff=with-other-authors

 - /map;type=topo/south-america/Brasil/São-Pualo;type=subway,cycle

 - /users;auth-group=super/John-Smith
is obviously a different view of the same resource:
/users/John-Smith
only this one is the public view, and the other is the super-user view

If I were to implement amazon.com's faceted search with path parameters, it might do this:
With Path Params:
http://www.amazon.com/Movies-TV;format=DVD,Blu-Ray;genre=drama;stars=3+;price=$0.01-$20/Movies;actor=Christopher-Lee;dir
ctor=Alan-Gibson

Original:
http://www.amazon.com/gp/search/ref=sr_nr_p_36_0?bbn=2649512011&qid=1329629982&rh=n%3A2625373011%2Cp_n_form
t_browse-bin%3A2650304011%7C2650305011%2Cn%3A%212625374011%2Cn%3A2649512011%2Cp_72%3A3014476011%2Cp_n_theme_browse-bin%3A2650368011%2Cp_36%3A3052254011&rnid=3052254011&low-price=0.01&high-price=20&x=0&y=0
Cp_n_theme_browse-bin%3A2650368011%2Cp_36%3A3052254011&rnid=3052254011&low-price=0.01&high-price=20&x=0&y=0#/ref=sr_nr_p_n_feature_three_br_2?rh=n%3A2625373011%2Cp_n_format_browse-bin%3A2650304011%7C2650305011%2Cn%3A%212625374011%2Cn%3A2649512011%2Cp_72%3A3014476011%2Cp_n_theme_browse-bin%3A2650368011%2Cp_36%
0#/ref=sr_nr_p_n_feature_three_br_2?rh=n%3A2625373011%2Cp_n_format_browse-bin%3A2650304011%7C2650305011%2Cn%3A%212625374011%2Cn%3A2649512011%2Cp_72%3A3014476011%2Cp_n_theme_browse-bin%3A2650368011%2Cp_36%3A1-2000%2Cp_n_feature_three_browse-bin%3A2651257011&bbn=2649512011&ie=UTF8&qid=1329630193&rnid=2651254011
%3A%212625374011%2Cn%3A2649512011%2Cp_72%3A3014476011%2Cp_n_theme_browse-bin%3A2650368011%2Cp_36%3A1-2000%2Cp_n_feature_three_browse-bin%3A2651257011&bbn=2649512011&ie=UTF8&qid=1329630193&rnid=2651254011
3A1-2000%2Cp_n_feature_three_browse-bin%3A2651257011&bbn=2649512011&ie=UTF8&qid=1329630193&rnid=2651254011

Implementation
 - TYPO3\FLOW3\Property\DataType\Uri breaks things down into the different URI components
 - TYPO3\FLOW3\MVC\Web\Routing\UriBuilder deals with URIs throughout Flow3

UriBuilder\setArguments allows prefixed query args: array('prefix1' => array('foo' => 'bar')) gets "&prefix1[foo]=bar". This could also be
done with a path parameter (which intrinsically has a 'scope', ie, earlier pages or templates in the rootline won't be able to use a
parameter set on their children. The parameter applies only from that level on.) &prefix1[foo]=bar might become
my-controller/prefix1;foo=bar/fun-stuff.

Routing

I think that Flow3 needs to handle the path parameters by default. Packages should not be required to create special routes just to
handle these parameters - they should be loaded in some kind of array that is accessible from within the package. The default
handling could be changed if required for a particular installation (see defaults below).
So, I'd imagine that routing would happen like this (or something like it):
 1. Separate a given URI (possibly an requested resource) into the various parts, like now: host, user, path, query ...
 2. Additionally parse the path segment to place all of the path params in a path_param array - something that helps respect the
'scoped' nature of these parameters - They are much more specific than the general query string parameters.
 3. Strip all of the path parameters from the path and process routing as usual.
 - This is important - routing matches only on the path-segments, not on the path parameters. A new kind of routing rule could be
used to redirect a request based on one or more of the path parameters, but the requested resource does not change based on the
params. The view might look different, or have additional features, but the path sans parameters and path with parameters identifies
the same node.

Defaults and Security

Accessing the same node, no matter the path parameters is important. Be default, or at least to begin with, path parameters should be
detected, stripped, and the request should be redirected with a '302 Found' to the same URL sans the parameters. Then when
someone begins to use path parameters in their package, the package can enable them - probably with a special routing rule that
turns them on, but only for a particular branch or segment of the path and/or tree.

2015-08-03 2/4

Back to the point of path parameters not changing the node in the content tree: Allowing redirection to other nodes could introduce
some security issues with url spoofing that would not be fun to deal with. Right now, the most common use of the semicolon is to hack
insecure software. Tomcat uses the path parameter to pass JSESSIONID when cookies can't easily be included in some request. This
Tomcat feature has been the basis for hacking and phishing as some browsers didn't understand the semicolon. To make sure Flow3
doesn't have the same problem - I think support for path parameters is a must, even if all that's done is drop them.

Final thoughts
Even though some browsers might have issues (the articles I saw online were somewhat dated, so the issues may have been
resolved) I think Flow3 should support this, because browsers are not the only content consumers around. Flow3 can be the basis for
some robust APIs that are merely for inter-server communication. Browsers also don't support HTTPs PUT or DELETE on form
elements, but Flow3 is getting amazing support for those... Please Support Path Parameters.

Another important path parameters side effect (hopefully) would be improved and more robust caching of pages that require
authentication (say of a particular usergroup).

As a side note, the specs also indicate that semicolons can be used in place of ampersands in the query string. I don't know if Flow3
supports that right now, but I think it should. (If needed, I can file another feature request about that.)

History
#1 - 2012-02-21 11:36 - Karsten Dambekalns

Without having read everything yet, I'd like to point to the arg_separator.* directives of PHP (see
http://www.sitepoint.com/php-and-standards-arg_separatoroutput/ for a nice article outlining some of the confusion around those). Whatever we do, if
the server has a setting to use ➜ as the output separator, we should follow suit, IMHO.

How would that fit together?

#2 - 2012-02-21 11:52 - Jacob Floyd

…moved to original description.

#3 - 2012-02-21 12:06 - Jacob Floyd

Karsten Dambekalns wrote:

Without having read everything yet, I'd like to point to the arg_separator.* directives of PHP (see
http://www.sitepoint.com/php-and-standards-arg_separatoroutput/ for a nice article outlining some of the confusion around those). Whatever we
do, if the server has a setting to use ➜ as the output separator, we should follow suit, IMHO.

How would that fit together?

Do we really want to support using session.use_trans_sid? From that article, and others I've read, it sounds like it'll give invalid urls within HTML docs
(using & instead of &. Overall, session.use_trans_sid sounds like it'll cause us a lot more grief than its worth. I'd rather Flow3 take care of sticking
a session ID in the url (as a path param, of course) if that's necessary.

I also think that using arg_separator.output would be a very clean way to have an installation use ';' instead of '&'. Flow3 would just use that when
generating or working with the query string. Even though session.use_trans_sid is disabled, Flow3 should still be able to grab this setting, or ignore it
by choosing it's own way.

However, I think arg_separator.output is only for the query string. Any Path Parameter handling we do will end up being part of flow3, as not many

2015-08-03 3/4

http://www.sitepoint.com/php-and-standards-arg_separatoroutput/
http://www.sitepoint.com/php-and-standards-arg_separatoroutput/

(none that I know of) apps support these scoped parameters.

#4 - 2012-02-21 15:17 - Karsten Dambekalns

Hi.

Jacob Floyd wrote:

Do we really want to support using session.use_trans_sid?

I don't give a dime about trans_sid :)

I also think that using arg_separator.output would be a very clean way to have an installation use ';' instead of '&'. Flow3 would just use that when
generating or working with the query string.

Exactly.

Interesting would be what happens if arg_separator.input is set to ';' - FLOW3 should still work, of course ;)

2015-08-03 4/4

