
TYPO3.Fluid - Feature # 36410

Status: New Priority: Should have
Author: Florian Carstens Category: ViewHelpers
Created: 2012-04-21 Assigned To:
Updated: 2012-08-13 Due date:
Has patch: No
Subject: Allow templates to send arguments back to layout
Description

Layouts can differ a little on a website from page to page without affecting the whole layout. For example: Some pages contain a
sidebar, others not. Or: Each page has it's own background which is set by a body or div container css class. I would like to set these
kind of settings by sending arguments to the layout. That could e.g. be realised by extending the layout viewHelper:

 <f:layout name="Master" arguments="{cssClass: blueBackground}" />

Of course, I can do this in the controller. But I think this wouldn't be the right place according to the MVC design pattern.

History
#1 - 2012-08-13 11:30 - Adrian Föder

I voted down for a simple reason: Sending back something removes the "side-effect-freeness" of Fluid Views (take it literally: they are Views). A View
should be "read only", or "non-desctructive", or whatever you like.
For the same reason, by the way, I also agree to not having writable variables inside a view (like eg Smarty has).

#2 - 2012-08-13 11:37 - Alexander Berl

Good point. Do you have any ideas for alternative solutions to this problem?
I have similar issues, which are currently solved by including different stylesheets depending on the current view (can be done via ViewHelper or
creating a <section> inside the layout <head>), but it's sometimes a hassle to have these sections in every template even if you don't need it.

#3 - 2012-08-13 11:46 - Adrian Föder

well, what solves most is having an own, "project specific" abstract class lying between the framework's own ActionController and your concrete action
controllers:

abstract class AbstractBaseController extends \TYPO3\FLOW3\Mvc\Controller\ActionController

Then I have such one:
 1 /**
 2 * Initializes the view before invoking an action method.
 3 *
 4 * @param \TYPO3\FLOW3\Mvc\View\ViewInterface $view The view to be initialized
 5 * @return void
 6 */
 7 protected function initializeView(\TYPO3\FLOW3\Mvc\View\ViewInterface $view) {

2015-08-03 1/2

 8 $localeCode = (string)$this->localizationService->getConfiguration()->getCurrentLocale();
 9 $localeCode = str_replace('_', '-', $localeCode);
10 $this->response->setHeader('Content-Language', $localeCode);
11 $view->assign('localeCode', $localeCode);
12
13 $view->assign('account', $this->account);
14 $view->assign('bodyClass', $this->generateBodyClassName());
15 }

The generateBodyClassName() creates a smart representation of the current controller, representing entity, logged-in/logged-out status etc; and from
here on most can be done via CSS.
take, for example,

<body class="ShopEntity ShopEntityOrderAction authenticated">

or similar (just an example).

So again, that abstract controller is pretty helpful so that I even encourage to do this as best-practice.

2015-08-03 2/2

