
TYPO3.Flow - Task # 55957

Status: New Priority: Should have
Author: Christopher Hlubek Category: AOP
Created: 2014-02-13 Assigned To:
Updated: 2014-02-28 Due date:
Sprint:
PHP Version:
Has patch: No
Complexity:
Subject: RFC: Optimize AOP proxies
Description

Our current approach of applying AOP in generated proxies has some downsides:

 - It's hard to follow the dynamic calls during debugging (Flow_Aop_Proxy_invokeJoinPoint, call_user_func_array,
$adviceObject->$methodName($joinPoint))
 - Profiling information contains a lot of these dynamic calls where it's again hard to follow parent / child call relations
 - The creation of all advices for all methods in the constructor has some overhead
 - The *Advice objects that are used to evaluate the advices dynamically add an additional overhead and nesting
 - The proxy code is hard to understand, it's not obvious what a proxy method will execute

Idea:

 - Unroll the advices in the proxied method, this is simple for everything but Around
 - Use a direct call to the aspect method for easier to debug code
 - Use a direct call to the original method by using a closure instead of the dynamic invocation with
Flow_Aop_Proxy_invokeJoinPoint

Sketch:

<?php

class TargetClass01 extends TargetClass01_Original implements \TYPO3\Flow\Object\Proxy\ProxyInterface {

 /**
 * Autogenerated Proxy Method
 */
 public function __construct() {

 if (isset($this->Flow_Aop_Proxy_methodIsInAdviceMode['__construct'])) {
 parent::__construct();
 } else {
 $this->Flow_Aop_Proxy_methodIsInAdviceMode['__construct'] = TRUE;
 try {
 $methodArguments = array();

 // The advice chain is only needed for an Around advice, before advices could be directly placed here
 // The advice chain is composed of a list of closures that actually call the method / advices to have an explicit call
instead of call_user_func_array
 // (we could cache the advice chain instances per method if we can measure a performance improvement)
 $adviceChain = new LightweightAdviceChain(function($joinPoint) {

2015-08-04 1/2

 // Needs PHP 5.4
 return parent::__construct();
 });

 $joinPoint = new \TYPO3\Flow\Aop\JoinPoint($this, 'TYPO3\Flow\Tests\Unit\Aop\Fixtures\TargetClass01',
'__construct', $methodArguments, $adviceChain);

 $aspect =
\TYPO3\Flow\Core\Bootstrap::$staticObjectManager->get('TYPO3\Flow\Tests\Functional\Aop\Fixtures\BaseFunctionalityTestingAspect');

 // The advices are invoked explicitly for easier debugging and profiling
 $result = $aspect->lousyConstructorAdvice($joinPoint);

 } catch (\Exception $e) {
 unset($this->Flow_Aop_Proxy_methodIsInAdviceMode['__construct']);
 throw $e;
 }
 unset($this->Flow_Aop_Proxy_methodIsInAdviceMode['__construct']);
 return;
 }

 if (get_class($this) === 'TYPO3\Flow\Tests\Unit\Aop\Fixtures\TargetClass01') {
 $this->initializeObject(1);
 }
 }
}

gAspect');

 // The advices are invoked explicitly for easier debugging and profiling
 $result = $aspect->lousyConstructorAdvice($joinPoint);

 } catch (\Exception $e) {
 unset($this->Flow_Aop_Proxy_methodIsInAdviceMode['__construct']);
 throw $e;
 }
 unset($this->Flow_Aop_Proxy_methodIsInAdviceMode['__construct']);
 return;
 }

 if (get_class($this) === 'TYPO3\Flow\Tests\Unit\Aop\Fixtures\TargetClass01') {
 $this->initializeObject(1);
 }
 }
}

History

2015-08-04 2/2

