
TYPO3.Fluid - Feature # 7608

Status: New Priority: Could have
Author: Lienhart Woitok Category: Core
Created: 2010-05-03 Assigned To:
Updated: 2013-11-07 Due date:
Has patch: Yes
Subject: Configurable shorthand/object accessor delimiters
Description

See Mailinglist Thread "About limitations in Fluid"

For some output formats (like LaTeX) it is not comfortable to use { and } for shorthand syntax as these symbols are used by the target
language. Therefore, the possibility to configure the open and close symbols for short hand syntax is necessary.

Attached patch provides this.

Related issues:
related to TYPO3.Fluid - Feature # 43356: Allow Fluid arrays only in ViewHelp... Resolved 2012-11-27
duplicated by TYPO3.Fluid - Feature # 11286: Alternative syntax for fluid obj... Closed 2010-12-05

History
#1 - 2010-05-04 00:09 - Thomas Deinhamer

Just my 2 cents, maybe it's nicer to name the variables
$openingShorthandSymbol and $closingShorthandSymbol or
maybe there are even better names for them.

#2 - 2010-05-07 07:21 - Jochen Rau
- Assigned To set to Sebastian Kurfuerst

#3 - 2010-06-18 15:20 - Sebastian Kurfuerst
- Project changed from Extbase MVC Framework to TYPO3.Fluid
- Assigned To deleted (Sebastian Kurfuerst)

#4 - 2010-06-18 15:21 - Sebastian Kurfuerst
- Priority changed from Should have to Could have

#5 - 2010-11-14 12:17 - Bastian Waidelich
- Subject changed from Configurable short hand syntax for fluid to Configurable shorthand/object accessor delimiters
- Category set to Core
- Branch set to v4 + v5

#6 - 2011-05-06 10:30 - Sebastian Kurfuerst
- Has patch set to Yes

#7 - 2012-11-26 16:07 - Karsten Dambekalns

One issue with such an approach is: what happens if you change this, and thus break templates included with other people's packages? The delimiter
used should be configured in the template, then you could mix it without worries…

2015-08-03 1/4

#8 - 2012-11-26 16:11 - Bastian Waidelich

Karsten Dambekalns wrote:

One issue with such an approach is: what happens if you change this, and thus break templates included with other people's packages?
The delimiter used should be configured in the template, then you could mix it without worries…

I just thought the same.. it could be set in initializeView for one action only somehow but that would couple controller & view too tightly together. An
alternative solution would be a ViewHelper that initializes the parser itself to parse the child nodes – but still we'd need to be able to configure the
parser and therefore need something similar to Lienhards solution..

#9 - 2012-11-26 17:44 - Bastian Waidelich
- File fluid-shorthandsyntax_7608_v2.patch added

Attached an updated (and slightly adjusted) version of Lienharts patch.
What's missing now is a way to modify the parser configuration from the "outside" (we need that anyways) and a way to specify the opening/closing
symbols in the template.
I created a basic test view helper for that:

 1class TestViewHelper extends \TYPO3\Fluid\Core\ViewHelper\AbstractViewHelper {
 2
 3 /**
 4 * @var \TYPO3\Fluid\View\StandaloneView
 5 * @Flow\Inject
 6 */
 7 protected $view;
 8
 9 /**
10 * @param string $openingShorthandSymbol
11 * @param string $closingShorthandSymbol
12 * @return string
13 */
14 public function render($openingShorthandSymbol = '{', $closingShorthandSymbol = '}') {
15 $this->view->setTemplateSource($this->renderChildren());
16 $this->view->setControllerContext($this->renderingContext->getControllerContext());
17 $this->view->assignMultiple($this->templateVariableContainer->getAll());
18
19 // NOTE: This getter doesn't exist yet
20 $templateParser = $this->view->getTemplateParser();
21 $parserConfiguration = $templateParser->getConfiguration();
22 if ($parserConfiguration === NULL) {
23 $parserConfiguration = new \TYPO3\Fluid\Core\Parser\Configuration();
24 }
25 $parserConfiguration->setOpeningShorthandSymbol($openingShorthandSymbol);
26 $parserConfiguration->setClosingShorthandSymbol($closingShorthandSymbol);
27 // NOTE: ...neither does this setter
28 $templateParser->setConfiguration($parserConfiguration);
29
30 return $this->view->render();
31 }

2015-08-03 2/4

32}

That could be used like

1<x:test openingShorthandSymbol="###" closingShorthandSymbol="###"><![CDATA[
2 ###someObjects -> f:count()###
3]]></x:test>

(note the required CDATA tags for this)

I don't like it. Maybe something like the {namespace ...} syntax would be nicer, but then this can only work per template/partial..

#10 - 2012-11-28 10:56 - Bastian Waidelich

FYI: After discussing this again with Sebastian we still did not find a nice way to configure this. Because it has to be changeable per
template/partial/layout it would probably need to be defined in the file or via the upcoming Views.yaml.. For now have a look at #43356 which greatly
reduces the clashes if you use Fluid in JavaScript, CSS etc.

#11 - 2013-09-23 18:09 - Bastian Waidelich

FYI there is a neat little work around using the alias ViewHelper.

So instead of having to use CDATA everywhere to escape curly brackets:

 1<script>
 2var options = <![CDATA[{]]>
 3 foo = "{foo}",
 4 bar = "{bar}
 5<![CDATA[}]]>;
 6function foo() <![CDATA[{]]>
 7
 8<![CDATA[}]]>
 9</script>

you can also put your content in a alias VH:

 1<f:alias map="{l: '{', r: '}'}">
 2<script>
 3var options = {l}
 4 foo = "{foo}",
 5 bar = "{bar}
 6{r};

2015-08-03 3/4

 7function foo() {l}
 8
 9{r}
10</script>
11</f:alias>

#12 - 2013-11-07 11:22 - Wouter Beeftink

I would love to have an alternative delimiter for fluid tags. Bastian's approach is a great workaround for now.
If it were up to me this ticket should be labelled as should have.

Files
fluid-shorthandsyntax.patch 9.8 kB 2010-05-03 Lienhart Woitok
fluid-shorthandsyntax_7608_v2.patch 17.5 kB 2012-11-26 Bastian Waidelich

2015-08-03 4/4

